scholarly journals Migraine therapeutics differentially modulate the CGRP pathway

Cephalalgia ◽  
2021 ◽  
Vol 41 (5) ◽  
pp. 499-514
Author(s):  
Minoti Bhakta ◽  
Trang Vuong ◽  
Tetsuya Taura ◽  
David S Wilson ◽  
Jennifer R Stratton ◽  
...  

Background The clinical efficacy of migraine therapeutic agents directed towards the calcitonin-gene related peptide (CGRP) pathway has confirmed the key role of this axis in migraine pathogenesis. Three antibodies against CGRP – fremanezumab, galcanezumab and eptinezumab – and one antibody against the CGRP receptor, erenumab, are clinically approved therapeutics for the prevention of migraine. In addition, two small molecule CGRP receptor antagonists, ubrogepant and rimegepant, are approved for acute migraine treatment. Targeting either the CGRP ligand or receptor is efficacious for migraine treatment; however, a comparison of the mechanism of action of these therapeutic agents is lacking in the literature. Methods To gain insights into the potential differences between these CGRP pathway therapeutics, we compared the effect of a CGRP ligand antibody (fremanezumab), a CGRP receptor antibody (erenumab) and a CGRP receptor small molecule antagonist (telcagepant) using a combination of binding, functional and imaging assays. Results Erenumab and telcagepant antagonized CGRP, adrenomedullin and intermedin cAMP signaling at the canonical human CGRP receptor. In contrast, fremanezumab only antagonized CGRP-induced cAMP signaling at the human CGRP receptor. In addition, erenumab, but not fremanezumab, bound and internalized at the canonical human CGRP receptor. Interestingly, erenumab also bound and internalized at the human AMY1 receptor, a CGRP receptor family member. Both erenumab and telcagepant antagonized amylin-induced cAMP signaling at the AMY1 receptor while fremanezumab did not affect amylin responses. Conclusion The therapeutic effect of agents targeting the CGRP ligand versus receptor for migraine prevention (antibodies) or acute treatment (gepants) may involve distinct mechanisms of action. These findings suggest that differing mechanisms could affect efficacy, safety, and/or tolerability in migraine patients.

2021 ◽  
Author(s):  
Jiyoung Kim ◽  
Kyoungjune Pak ◽  
Gha-Hyun Lee ◽  
Jae Wook Cho ◽  
Hyun-Woo kim

Abstract Background: The pathophysiology of migraine has been researched incessantly, and it has been suggested that calcitonin gene-related peptide (CGRP) is associated with migraine attacks. CGRP receptor blockers are attracting attention for migraine prevention and treatment of acute episodes, and CGRP receptor antagonists have been shown to be effective in treating acute migraine headaches. This meta-analysis aimed to assess the effect of available CGRP receptor antagonists, focusing on their therapeutic doses for acute migraine treatment.Methods: We performed a systematic search of MEDLINE (from inception to March 2021) and EMBASE (from inception to March 2021) for English publications using the keywords “migraine” and “Calcitonin gene-related peptide,” limited to human studies.Results: Five studies that focused on examining the effects of CGRP receptor antagonists on acute migraine treatment met the eligibility criteria for this meta-analysis. The pooled analysis demonstrated that the CGRP receptor antagonist improved freedom from pain (OR=2.066, 95% confidence interval [CI] 1.766–2.418, I2=0%), absence of bothersome symptoms (OR=1.606, 95% CI=1.408–1.830, I2=0%), pain relief (OR=1.791, 95% CI=1.598–2.008, I2=0%), and freedom from nausea (OR=1.361, 95% CI=1.196–1.548, I2=0%), significantly more than the placebo. Conclusions: CGRP receptor antagonists are effective for acute migraine treatment and are expected to be used clinically as emerging therapeutic agents.


2020 ◽  
pp. 61-67
Author(s):  
Afonso Henrique Aragao ◽  
Joel Sanabria Duarte ◽  
Daniel Benzecry Almeida ◽  
Ricardo Ramina

The role of calcitonin gene-related peptide (CGRP) and its receptor have played an important role in migraine for the last decades due to development of therapies that target their receptors at the trigeminal pain system, aiming at prevention or relief of acute migraine attacks. At first, CGRP receptor antagonists, called gepants have demonstrated appropriate effectiveness. In addition, they did not cause vasoconstriction, one of the drawbacks of triptans. However, their use had to be discontinued due to the risk of liver toxicity. Humanized monoclonal antibodies towards CGRP and the CGRP receptor have been developed as an alternative approach to block CGRP transmission. Still, there are some questions not fully answered as where CGRP and its receptor are located, how they influence the mechanisms of migraine attacks and if the blood brain barrier has any sort of importance. There is still much to learn about CGRP and migraine pathophysiology, especially its anatomical target sites and anti-CGRP agents. This paper presents a review of CGRP, including a brief history, focusing in CGRP mechanism, updates and future treatments.


2012 ◽  
Vol 22 (14) ◽  
pp. 4723-4727 ◽  
Author(s):  
Xiaojun Han ◽  
Rita L. Civiello ◽  
Charles M. Conway ◽  
Deborah A. Cook ◽  
Carl D. Davis ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Giuseppe Deganutti ◽  
Silvia Atanasio ◽  
Roxana-Maria Rujan ◽  
Patrick M. Sexton ◽  
Denise Wootten ◽  
...  

Class B1 G protein-coupled receptors (GPCRs) are important targets for many diseases, including cancer, diabetes, and heart disease. All the approved drugs for this receptor family are peptides that mimic the endogenous activating hormones. An understanding of how agonists bind and activate class B1 GPCRs is fundamental for the development of therapeutic small molecules. We combined supervised molecular dynamics (SuMD) and classic molecular dynamics (cMD) simulations to study the binding of the calcitonin gene-related peptide (CGRP) to the CGRP receptor (CGRPR). We also evaluated the association and dissociation of the antagonist telcagepant from the extracellular domain (ECD) of CGRPR and the water network perturbation upon binding. This study, which represents the first example of dynamic docking of a class B1 GPCR peptide, delivers insights on several aspects of ligand binding to CGRPR, expanding understanding of the role of the ECD and the receptor-activity modifying protein 1 (RAMP1) on agonist selectivity.


Cephalalgia ◽  
2013 ◽  
Vol 34 (8) ◽  
pp. 594-604 ◽  
Author(s):  
R Greco ◽  
AS Mangione ◽  
F Siani ◽  
F Blandini ◽  
M Vairetti ◽  
...  

Background The release of calcitonin gene-related peptide (CGRP) from trigeminal nerves plays a central role in the pathophysiology of migraine and clinical evidence shows an antimigraine effect for CGRP receptor antagonists. Systemic administration of nitroglycerin (NTG), a nitrovasodilator, consistently provokes spontaneous-like migraine attacks in migraine sufferers; in the rat, systemic NTG induces a condition of hyperalgesia, probably through the activation of cerebral/spinal structures involved in nociceptive transmission. Aim The aim of this article is to test the analgesic effect of the CGRP receptor antagonist MK-8825 in two animal models of pain that may be relevant for migraine: the tail flick test and the formalin test performed during NTG-induced hyperalgesia. Results MK-8825 showed analgesic activity when administered alone at both the tail flick test and the formalin test. Furthermore, the CGRP antagonist proved effective in counteracting NTG-induced hyperalgesia in both tests. MK-8825 indeed reduced the nociceptive behavior when administered either simultaneously or prior to (30–60 minutes before) NTG. Conclusion These data suggest that MK-8825 may represent a potential therapeutic tool for the treatment of migraine.


1997 ◽  
Vol 7 (20) ◽  
pp. 2673-2676 ◽  
Author(s):  
Robert A. Daines ◽  
Kelvin K.C. Sham ◽  
Jack J. Taggart ◽  
William D. Kingsbury ◽  
James Chan ◽  
...  

2001 ◽  
Vol 1 ◽  
pp. 12-12
Author(s):  
M. A. Prado ◽  
B. Evans-Bain ◽  
S. L. Santi ◽  
I. M. Dickerson

The calcitonin gene-related peptide (CGRP)-receptor component protein (RCP) is a 17-kDa intracellular peripheral membrane protein required for signal transduction at CGRP receptors. To determine the role of RCP in CGRP-mediated signal transduction, RCP was depleted from NIH3T3 cells using antisense strategy. Loss of RCP protein correlated with loss of cAMP production by CGRP in the antisense cells. In contrast, loss of RCP had no effect on CGRP-mediated binding; therefore RCP is not acting as a chaperone for the CGRP receptor. Instead, RCP is a novel signal transduction molecule that couples the CGRP receptor to the cellular signal transduction machinery. RCP thus represents a prototype for a new class of signal transduction proteins that are required for regulation of G protein-coupled receptors.


ChemInform ◽  
2010 ◽  
Vol 29 (6) ◽  
pp. no-no ◽  
Author(s):  
R. A. DAINES ◽  
K. K. C. SHAM ◽  
J. J. TAGGART ◽  
W. D. KINGSBURY ◽  
J. CHAN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document