Design and Full-Scale Testing of M50/P1 Bolt-Down Removeable Bollard System

Author(s):  
William F. Williams

The purpose of this project was to design and test a new bolt-down bollard system that meets the requirements of American Standards for Testing Materials (ASTM) Designation F2656-15 M50/P1 impact conditions. The test installation consisted of three vertical 10-in. diameter (nominal) bollards with welded base plates bolted to a shallow reinforced concrete foundation. The foundation for this system was sized to reduce the foundation embedment. Shallow foundations are often necessary for use in cities and urban areas where utilities can conflict with deeper foundations. Standard common members and materials were used in the installation to accommodate fabrication and installation in locations all over the world. The bollards can be removed to provide access if necessary. Full-scale testing was performed on the bolt-down bollard system. The bollard system design for this project successfully met the requirements of M50/P1 with a total payload penetration of less than 1 m. The new bollard design successfully met all the performance requirements for ASTM F2656-15 M50/P1. Details of the design and testing of the bolt-down bollard system are provided in this paper. Crash-testing videos and additional information on the design and full-scale testing will be provided in the presentation.

Author(s):  
Craig Taylor ◽  
Sreekanta Das ◽  
Laurie Collins ◽  
Muhammad Rashid

Very few studies have been conducted concerning fatigue in steel line pipe and fewer using full-scale testing. Further, at the time of this study, no research on full-scale testing was available in open literature regarding fatigue behavior of line pipe with longitudinal cracks, despite being considered more critical than the line pipe with cracks oriented in the circumferential direction. In the current research work, fatigue crack growth was investigated in NPS 20, API 5L X-70 grade, electrical resistance welding (ERW) straight-seam steel line pipes in the base metal and at the weld seam for various orientations. It was found that there was no significant difference between fatigue crack growth in the base metal and at the weld seam for the tested stress ratio. Increasing the angle of inclination of the crack with respect to the weld line was found to decrease the rate of fatigue crack growth due to a decrease in the mode I stress component. Finally, it was observed that despite the difference in fatigue crack growth rates, the crack aspect ratios were nearly identical for all cracks at the same crack depth.


SIMULATION ◽  
2002 ◽  
Vol 78 (10) ◽  
pp. 587-599 ◽  
Author(s):  
Ali O. Atahan

Computer simulation of vehicle collisions has improved significantly over the past decade. With advances in computer technology, nonlinear finite element codes, and material models, full-scale simulation of such complex dynamic interactions is becoming ever more possible. In this study, an explicit three-dimensional nonlinear finite element code, LS-DYNA, is used to demonstrate the capabilities of computer simulations to supplement full-scale crash testing. After a failed crash test on a strong-post guardrail system, LS-DYNA is used to simulate the system, determine the potential problems with the design, and develop an improved system that has the potential to satisfy current crash test requirements. After accurately simulating the response behavior of the full-scale crash test, a second simulation study is performed on the system with improved details. Simulation results indicate that the system performs much better compared to the original design.


Sign in / Sign up

Export Citation Format

Share Document