Development of Wireless Sensors for Shake Table and Full Scale Testing and Health Monitoring of Structures

Author(s):  
Zoran T Rakicevic ◽  
Igor Markovski ◽  
Dejan Filipovski ◽  
Slobodan Micajkov ◽  
Mihail Garevski
2021 ◽  
pp. 147592172110064
Author(s):  
Yuequan Bao ◽  
Jian Li ◽  
Tomonori Nagayama ◽  
Yang Xu ◽  
Billie F Spencer ◽  
...  

To promote the development of structural health monitoring around the world, the 1st International Project Competition for Structural Health Monitoring (IPC-SHM, 2020) was initiated and organized in 2020 by the Asia-Pacific Network of Centers for Research in Smart Structures Technology, Harbin Institute of Technology, the University of Illinois at Urbana-Champaign, and four leading companies in the application of structural health monitoring technology. The goal of this competition was to attract more young scholars to engage in the study of structural health monitoring, encouraging them to provide creative and effective solutions for full-scale applications. Recognizing the recent advent and importance of artificial intelligence in structural health monitoring, three competition projects were set up with the data from full-scale bridges: (1) image-based identification of fatigue cracks in bridge girders, (2) data anomaly detection for structural health monitoring, and (3) condition assessment of stay cables using cable tension data. Three corresponding data sets were released at http://www.schm.org.cn and http://sstl.cee.illinois.edu/ipc-shm2020 . Participants were required to be full-time undergraduate students, M.S. students, Ph.D. students, or young scholars within 3 years after obtaining their Ph.D. Both individual and teams (each team had no more than five individuals) could compete. Submissions for the competition included a 10- to 15-page technical paper, a 10-min presentation video with PowerPoint slides, and commented code. The organizing committee then conducted the validation, review, and evaluation. A total of 330 participants in 112 teams from 70 universities and institutions in 12 countries registered for the competition, resulting in 75 papers from 56 teams from 57 different affiliations finally being submitted. Of those submitted, 31, 30, and 14 papers were for Projects 1, 2, and 3, respectively. After completion of the review by the organization committee and awards committee, the top 10, 10, and 5 teams were selected as the prize winners for the three competition projects.


Author(s):  
Marco Miglietta ◽  
Nicolò Damiani ◽  
Gabriele Guerrini ◽  
Francesco Graziotti

AbstractTwo full-scale building specimens were tested on the shake-table at the EUCENTRE Foundation laboratories in Pavia (Italy), to assess the effectiveness of an innovative timber retrofit solution, within a comprehensive research campaign on the seismic vulnerability of existing Dutch unreinforced masonry structures. The buildings represented the end-unit of a two-storey terraced house typical of the North-Eastern Netherlands, a region affected by induced seismicity over the last few decades. This building typology is particularly vulnerable to earthquake excitation due to lack of seismic details and irregular distribution of large openings in masonry walls. Both specimens were built with the same geometry. Their structural system consisted of cavity walls, with interior load-bearing calcium-silicate leaf and exterior clay veneer, and included a first-floor reinforced concrete slab, a second-floor timber framing, and a roof timber structure supported by masonry gables. A timber retrofit was designed and installed inside the second specimen, providing an innovative sustainable, light-weight, reversible, and cost-effective technique, which could be extensively applied to actual buildings. Timber frames were connected to the interior surface of the masonry walls and completed by oriented strands boards nailed to them. The second-floor timber diaphragm was stiffened and strengthened by a layer of oriented-strand boards, nailed to the existing joists and to additional blocking elements through the existing planks. These interventions resulted also in improved wall-to-diaphragm connections with the inner leaf at both floors, while steel ties were added between the cavity-wall leaves. The application of the retrofit system favored a global response of the building with increased lateral capacities of the masonry walls. This paper describes in detail the bare and retrofitted specimens, compares the experimental results obtained through similar incremental dynamic shake-table test protocols up to near-collapse conditions, and identifies damage states and damage limits associated with displacements and deformations.


Author(s):  
Craig Taylor ◽  
Sreekanta Das ◽  
Laurie Collins ◽  
Muhammad Rashid

Very few studies have been conducted concerning fatigue in steel line pipe and fewer using full-scale testing. Further, at the time of this study, no research on full-scale testing was available in open literature regarding fatigue behavior of line pipe with longitudinal cracks, despite being considered more critical than the line pipe with cracks oriented in the circumferential direction. In the current research work, fatigue crack growth was investigated in NPS 20, API 5L X-70 grade, electrical resistance welding (ERW) straight-seam steel line pipes in the base metal and at the weld seam for various orientations. It was found that there was no significant difference between fatigue crack growth in the base metal and at the weld seam for the tested stress ratio. Increasing the angle of inclination of the crack with respect to the weld line was found to decrease the rate of fatigue crack growth due to a decrease in the mode I stress component. Finally, it was observed that despite the difference in fatigue crack growth rates, the crack aspect ratios were nearly identical for all cracks at the same crack depth.


Sign in / Sign up

Export Citation Format

Share Document