Using Predictive Models to Estimate the Properties of Binders in Reclaimed Asphalt Pavement Mixes using Fine Aggregate Matrix Mix Testing

Author(s):  
Mohamed Elkashef ◽  
Shawn S. Hung ◽  
David Jones ◽  
John Harvey

A number of predictive models, such as the Hirsch and Al-Khateeb models, have been proposed to determine the properties of asphalt binders from asphalt concrete mix testing results. Fine aggregate matrix (FAM) mix testing can also provide useful insights into the likely performance of asphalt concrete mixes. Consequently, FAM mix testing can be an appropriate means of assessing the predictive power of these models. In this study, FAM mixes prepared with two virgin binders, PG58-28 and PG64-16, and then with different percentages of reclaimed asphalt pavement (RAP) were tested to determine their stiffness and phase angle using temperature-frequency sweeps in a dynamic shear rheometer. The data from the control mixes with no RAP were used along with the rheological properties of the virgin binders to fit the Hirsch and Al-Khateeb models. The fitted models were then used to estimate the properties of the binders in the 15% and 25% RAP FAM mixes. A comparison of the estimated binder properties with the measured binder properties clearly indicated that the fitting parameters are binder dependent. Moreover, the estimated binder moduli deviate from the measured moduli, particularly at high temperatures. The estimated complex shear moduli from the model were found to be consistently higher than the measured shear moduli values of the chemically extracted binders. It was thus concluded that the predictive models studied, in their current form, fail to provide a reliable estimate of the binder properties in mixes containing RAP.

2019 ◽  
Vol 278 ◽  
pp. 01012
Author(s):  
Raudhah ◽  
R. Jachrizal Sumabrata ◽  
Sigit Pranowo Hadiwardoyo

Reclaimed asphalt pavement (RAP) comprises removed pavement materials containing high-quality aggregates and asphalt which can be recycled as materials for new pavement construction. It is removed continually for reconstruction, resurfacing, and maintenance purposes, and if not recycled will become waste. This paper determines the influence of using different RAP percentages and asphalt content in warm mix asphalt on the Marshall test results for asphalt concrete binder course (AC-BC) using Retona Blend 55. The percentages of RAP are determined by analyzing the gradation of the existing aggregates in RAP and adding virgin aggregates so that it meets the standard gradation for AC-BC specified by the Ministry of Public Works and Housing. The RAP percentages in the asphalt mixes in this study are 35%, 45%, and 51.55% of total aggregates, while the asphalt contents are 5%, 6%, and 7% of the total mix. To determine the influence of RAP percentage and asphalt content, and to discover if there is any influence from the interaction between these two factors, the analysis is performed using a factorial design. The results of this study show that variation in RAP percentages in the mix has no significant influence on stability, flow, and Marshall quotient, but there is significant influence on void in mineral aggregates (VMA), void in mix (VIM), and void filled with asphalt (VFA). Correlations of 97.5%, 80%, and 95.1%, respectively show that increase in RAP percentage increases VMA and VIM and decreases VFA. The interaction between RAP percentage and asphalt content has no significant influence on Marshall test results.


Sign in / Sign up

Export Citation Format

Share Document