scholarly journals Platform-Based Collaborative Routing using Dynamic Prices as Incentives

Author(s):  
Bilge Atasoy ◽  
Frederik Schulte ◽  
Alex Steenkamp

Over the last decade, platforms have emerged in numerous industries and often transformed them, posing new challenges for transportation research. Platform providers such as Uber, Uber Freight, Blackbuck, or Lyft mostly do not have immediate control over the physical resources needed to move people or goods. They often operate in a multi-sided market setting, where it is crucial to design clear incentives to motivate a third party to engage in collaboration. As a consequence, collaboration incentives become an integral part of decision support models for platform providers and they need to be developed at the operational level and applied dynamically. Naturally, this involves a trade-off between the interests of platform providers, shippers, and carriers. In this work, we investigate the real-world case of a platform provider operating as an intermediary between shippers and carriers in a less-than-truckload (LTL) business. We propose a new mixed-integer programming (MIP) formulation for the underlying collaborative pickup and delivery problem with time windows (PDPTW) that minimizes the price the platform pays to the carriers and enforces collaboration incentives for carriers through individual rationality constraints. This is facilitated by a dynamic pricing approach which ensures that carriers are better off collaborating than working on their own. The pricing is bounded by the costs and market conditions to keep the price range reasonable. We explore possible policies to be implemented by the platform and find that their business remains profitable when individual rationality is enforced and the platform could even guarantee increased profit margins to the carriers as incentives.

2019 ◽  
Vol 271 ◽  
pp. 06005
Author(s):  
Devaraj R. Krishnan ◽  
Tieming Liu

The number of online market places for freight matching is on the rise. Online market places help small trucking companies find shipping customers. However, they do not provide cargo consolidation strategies. This lack of effective consolidation has adverse effects on the shipping industry and greenhouse gas emission. To that extent, this article addresses Multiple Vehicle Pickup and Delivery Problem with Time Windows (MVPDPTW). We propose a Mixed Integer Programming (MIP) model and a branch-and-cut algorithm geared towards identifying effective freight consolidation opportunities. For emission studies, we used a cost conversion technique from the literature to convert emission levels into monetary values. On real-world logistics company test instances, our model identified routes with lower cost and lower emission levels than the actual routes.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jiajing Gao ◽  
Haolin Li ◽  
Jingwen Wu ◽  
Junyan Lyu ◽  
Zheyi Tan ◽  
...  

The increasing gap between medical waste production and disposal stresses the urgency of further development of urban medical waste recycling. This paper investigates an integrated optimisation problem in urban medical waste recycling network. It combines the vehicle routing problem of medical facilities with different requirements and the collection problem of clinics’ medical waste to the affiliated hospital. To solve this problem, a compact mixed-integer linear programming model is proposed, which takes account of the differentiated collection strategy and time windows. Since the medical waste recycling operates according to a two-day pattern, the periodic collection plan is also embedded in the model. Moreover, we develop a particle swarm optimisation (PSO) solution approach for problem-solving. Numerical experiments are also conducted to access the solution efficiency of the proposed algorithm, which can obtain a good solution in solving large-scale problem instances within a reasonable computation time. Based on the results, some managerial implications can be recommended for the third-party recycling company.


Author(s):  
András Éles ◽  
István Heckl ◽  
Heriberto Cabezas

AbstractA mathematical model is introduced to solve a mobile workforce management problem. In such a problem there are a number of tasks to be executed at different locations by various teams. For example, when an electricity utility company has to deal with planned system upgrades and damages caused by storms. The aim is to determine the schedule of the teams in such a way that the overall cost is minimal. The mobile workforce management problem involves scheduling. The following questions should be answered: when to perform a task, how to route vehicles—the vehicle routing problem—and the order the sites should be visited and by which teams. These problems are already complex in themselves. This paper proposes an integrated mathematical programming model formulation, which, by the assignment of its binary variables, can be easily included in heuristic algorithmic frameworks. In the problem specification, a wide range of parameters can be set. This includes absolute and expected time windows for tasks, packing and unpacking in case of team movement, resource utilization, relations between tasks such as precedence, mutual exclusion or parallel execution, and team-dependent travelling and execution times and costs. To make the model able to solve larger problems, an algorithmic framework is also implemented which can be used to find heuristic solutions in acceptable time. This latter solution method can be used as an alternative. Computational performance is examined through a series of test cases in which the most important factors are scaled.


1991 ◽  
Vol 54 (1) ◽  
pp. 7-22 ◽  
Author(s):  
Yvan Dumas ◽  
Jacques Desrosiers ◽  
François Soumis

2020 ◽  
Vol 21 (2) ◽  
pp. 225-234
Author(s):  
Ananda Noor Sholichah ◽  
Y Yuniaristanto ◽  
I Wayan Suletra

Location and routing are the main critical problems investigated in a logistic. Location-Routing Problem (LRP) involves determining the location of facilities and vehicle routes to supply customer's demands. Determination of depots as distribution centers is one of the problems in LRP.  In LRP, carbon emissions need to be considered because these problems cause global warming and climate change. In this paper, a new mathematical model for LRP considering CO2 emissions minimization is proposed. This study developed a new  Mixed Integer Linear Programming (MILP)  model for LRP with time windows and considered the environmental impacts.  Finally, a case study was conducted in the province of Central Java, Indonesia. In this case study, there are three depot candidates. The study results indicated that using this method in existing conditions and constraints provides a more optimal solution than the company's actual route. A sensitivity analysis was also carried out in this case study.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Ming Wei ◽  
Binbin Jing ◽  
Jian Yin ◽  
Yang Zang

This study proposes a multiobjective mixed integer linear programming (MOMILP) model for a demand-responsive airport shuttle service. The approach aims to assign a set of alternative fuel vehicles (AFVs) located at different depots to visit each demand point within the specified time and transport all of them to the airport. The proposed model effectively captures the interactions between path selection and environmental protection. Moreover, users with flexible pick-up time windows, the time-varying speed of vehicles on the road network, and the limited fuel for the route duration are also fully considered in this model. The work aims at simultaneously minimizing the operating cost, vehicle fuel consumption, and CO2 emissions. Since this task is an NP-hard problem, a heuristic-based nondominated sorting genetic algorithm (NSGA-II) is also presented to find Pareto optimal solutions in a reasonable amount of time. Finally, a real-world example is provided to illustrate the proposed methodology. The results demonstrate that the model not only selects an optimal depot for each AFV but also determines its route and timetable plan. A sensitivity analysis is also given to assess the effect of early/late arrival penalty weights and the number of AFVs on the model performance, and the difference in quality between the proposed and traditional models is compared.


Sign in / Sign up

Export Citation Format

Share Document