Macroscopic Real-Time Timetable Rescheduling Approach for High-Speed Railway under Complete Blockages Using a Three-Stage Algorithm

Author(s):  
Bowen Gao ◽  
Decun Dong ◽  
Yusen Wu ◽  
Dongxiu Ou

The rescheduling of train timetables under a complete blockage is a challenging process, which is more difficult when timetables contain lots of trains. In this paper, a mixed integer linear programming (MILP) model is formulated to solve the problem, following the rescheduling strategy that blocked trains wait inside the stations during the disruption. When the exact end time of the disruption is known, trains at stations downstream of the blocked station can depart early. The model aims at minimizing the total delay time and the total number of delayed trains under the constraints of station capacities, activity time, overtaking rules, and rescheduling strategies. Because there are too many variables and constraints of the MILP model to be solved, a three-stage algorithm is designed to speed up the solution. Experiments are carried out on the Beijing–Guangzhou high-speed railway line from Chibibei to Guangzhounan. The original timetable contains 162 trains, including 29 cross-line trains and 133 local trains. The simulation results show that our model can handle the optimization task of the timetable rescheduling problem very well. Compared with the one-stage algorithm, the three-stage algorithm is proved to greatly improve the solving speed of the model. All instances can get a better optimized disposition timetable within 450 to 600 s, which is acceptable for practical use.

2017 ◽  
Vol 11 ◽  
pp. 74
Author(s):  
Lukáš Týfa ◽  
David Vodák

The paper first describes high speed rail generally and explains the relationship between high speed and conventional railway networks (according to the vehicle types in operation on the network). The core of the paper is comprised of the methodology for choosing the best route for a railway line and its application to the high speed railway connection Praha – Brno. The Algorithm used assumes the existence of more route proposals, which could be different in terms of the operational conception, line routing or types of vehicles used. The optimal variant is the one with the lowest daily cost, which includes infrastructure and vehicle costs; investment and operational costs. The results from applying this model confirmed the assumption, that a dedicated high speed railway line, only for high speed trains, has the same or lower investment costs than a line for both high speed and conventional trains. Furthermore, a dedicated high line also has a lower cost for infrastructure maintenance but a higher cost for buying high speed multiple units.


2019 ◽  
Vol 48 (1) ◽  
pp. 31-38
Author(s):  
Wen Xu ◽  
Yuyan Tan ◽  
Bishal Sharma ◽  
Ziyulong Wang

Due to several obvious advantages both in transport marketing and train operation planning, the cyclic timetable has already applied in many high-speed railway (HSR) countries. In order to adopt the cyclic timetable in China's HSR system, a Mixed Integer Programmer (MIP) model is proposed in this paper involving many general constraints, such as running time, dwell time, headway, and connection constraints. In addition, the real-world overtaking rule that concerning a train with higher priority will not be overtaken by a slower one is incorporated into the cyclic timetable optimization model. An approach based on fixed departure is proposed to get a cyclic timetable with minimum total journey time within a reasonable time. From numerical investigations using data from Guangzhou-Zhuhai HSR line in China, the proposed model and associated approach are tested and shown to be effective.


Author(s):  
Dian Wang ◽  
Shuguang Zhan ◽  
Qiyuan Peng ◽  
Wentao Zhou

Overnight high-speed trains are very popular and convenient for passengers in countries with a large territory like China. However, the overnight high-speed train operation inevitably conflicts with the regular evening maintenance. We focus on both overnight high-speed train scheduling and maintenance planning to eliminate the conflict. Because some of the daytime high-speed trains that run early in the morning or late in the evening also interact with overnight high-speed trains and maintenance, we also allow them to be to slightly rescheduled to improve both the quality of the overnight train timetable and the maintenance plan. Our integrated optimization problem is formulated as a mixed integer linear programming model, which can be solved efficiently by the commercial solver CPLEX. Finally, we validate our model on a large real-world case constructed based on the Beijing–Guangzhou high-speed railway line in China.


2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
Li Wang ◽  
Yong Qin ◽  
Jie Xu ◽  
Limin Jia

A fuzzy optimization model based on improved symmetric tolerance approach is introduced, which allows for rescheduling high-speed railway timetable under unexpected interferences. The model nests different parameters of the soft constraints with uncertainty margin to describe their importance to the optimization purpose and treats the objective in the same manner. Thus a new optimal instrument is expected to achieve a new timetable subject to little slack of constraints. The section between Nanjing and Shanghai, which is the busiest, of Beijing-Shanghai high-speed rail line in China is used as the simulated measurement. The fuzzy optimization model provides an accurate approximation on train running time and headway time, and hence the results suggest that the number of seriously impacted trains and total delay time can be reduced significantly subject to little cost and risk.


Author(s):  
Minling Feng ◽  
Chaoxian Wu ◽  
Shaofeng Lu ◽  
Yihui Wang

Automatic train operation (ATO) systems are fast becoming one of the key components of the intelligent high-speed railway (HSR). Designing an effective optimal speed trajectory for ATO is critical to guide the high-speed train (HST) to operate with high service quality in a more energy-efficient way. In many advanced HSR systems, the traction/braking systems would provide multiple notches to satisfy the traction/braking demands. This paper modelled the applied force as a controlled variable based on the selection of notch to realise a notch-based train speed trajectory optimisation model to be solved by mixed integer linear programming (MILP). A notch selection model with flexible vertical relaxation was proposed to allow the traction/braking efforts to change dynamically along with the selected notch by introducing a series of binary variables. Two case studies were proposed in this paper where Case study 1 was conducted to investigate the impact of the dynamic notch selection on train operations, and the optimal result indicates that the applied force can be flexibly adjusted corresponding to different notches following a similar operation sequence determined by optimal train control theory. Moreover, in addition to the maximum traction/braking notches and coasting, medium notches with appropriate vertical relaxation would be applied in accordance with the specific traction/braking demands to make the model feasible. In Case study 2, a comprehensive numerical example with the parameters of CRH380AL HST demonstrates the robustness of the model to deal with the varying speed limit and gradient in a real-world scenario. The notch-based model is able to obtain a more realistic optimal strategy containing dynamic notch selection and speed trajectory with an increase (1.622%) in energy consumption by comparing the results of the proposed model and the non-notch model.


Author(s):  
Gonglian Dai ◽  
Meng Wang ◽  
Tianliang Zhao ◽  
Wenshuo Liu

<p>At present, Chinese high-speed railway operating mileage has exceeded 20 thousand km, and the proportion of the bridge is nearly 50%. Moreover, high-speed railway design speed is constantly improving. Therefore, controlling the deformation of the bridge structure strictly is particularly important to train speed-up as well as to ensure the smoothness of the line. This paper, based on the field test, shows the vertical and transverse absolute displacements of bridge structure by field collection. What’s more, resonance speed and dynamic coefficient of bridge were studied. The results show that: the horizontal and vertical stiffness of the bridge can meet the requirements of <b>Chinese “high-speed railway design specification” (HRDS)</b>, and the structure design can be optimized. However, the dynamic coefficient may be greater than the specification suggested value. And the simply supported beam with CRTSII ballastless track has second-order vertical resonance velocity 306km/h and third-order transverse resonance velocity 312km/h by test results, which are all coincide with the theoretical resonance velocity.</p>


2014 ◽  
Vol 716-717 ◽  
pp. 342-346
Author(s):  
Xiao Jun Zhou ◽  
Bo Jiang ◽  
Yue Feng Zhou ◽  
Yu Yu

On the basis of different landform and multifarious topography in rugged mountainous area in southwest China, typical tunnel portals for single track tunnels in a new high speed railway line have been presented in the paper. The portal comprises headwall, shed tunnel, bridge abutment and its support. Portal with headwall is suitable for tunnel to resist front earth pressure on high and abrupt slope. Shed tunnel is placed in front of headwall so as to prevent rockfall; its outward part is built into a flared one. Meanwhile, the installation of bridge and its abutment are also included in the portal according to landform in the paper.


Author(s):  
Linggang Kong ◽  
Shuo Li ◽  
Xinlong Chen ◽  
Hongyan Qin

Vehicle on-board equipment is the most important train control equipment in high-speed railways. Due to the low efficiency and accuracy of manual detection, in this paper, we propose an intellectualized fault diagnosis method based on adaptive neuro-fuzzy inference system (ANFIS) network. Firstly, we collect the fault information sheets that are recorded by electrical personnel, using frequency weighting factor and principal component analysis (PCA) to realize the data extraction and dimension reduction; Then, in order to improve the fault diagnosis rate of the model, using genetic algorithm (GA) to optimize the parameters of the ANFIS network; Finally, using the fault data of a high-speed railway line in 2019 to test the model, the optimized ANFIS model can achieve 96% fault diagnosis rate for vehicle on-board equipments, which indicating the method is effective and accurate.


Sign in / Sign up

Export Citation Format

Share Document