Anatomic Femoral Tunnels in Posterior Cruciate Ligament Reconstruction

2012 ◽  
Vol 41 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Marc Tompkins ◽  
Thomas C. Keller ◽  
Matthew D. Milewski ◽  
Cree M. Gaskin ◽  
Stephen F. Brockmeier ◽  
...  

Background: During posterior cruciate ligament (PCL) reconstruction, the placement and orientation of the femoral tunnel is critical to postoperative PCL function. Purpose: To compare the ability of outside-in (OI) versus inside-out (IO) femoral tunnel drilling in placing the femoral tunnel aperture within the anatomic femoral footprint of the PCL, and to evaluate the orientation of the tunnels within the medial femoral condyle. Study Design: Controlled laboratory study. Methods: Ten matched pairs of cadaver knees were randomized such that within each pair, 1 knee underwent arthroscopic OI drilling and the other underwent IO drilling. All knees underwent computed tomography (CT) both pre- and postoperatively with a technique optimized for ligament evaluation (80 keV with maximum mAs). Commercially available third-party software was used to fuse the pre- and postoperative CT scans, allowing comparison of the PCL footprint to the drilled tunnel. The percentage of tunnel aperture contained within the native footprint, as well as the distance from the center of the tunnel aperture to the center of the footprint, were measured. In addition, the orientation of the tunnels in the coronal and axial planes was evaluated. Results: The OI technique placed 70.4% ± 23.7% of the tunnel within the native femoral footprint compared with 79.8% ± 16.7% for the IO technique ( P = .32). The OI technique placed the center of the femoral tunnel 4.9 ± 2.2 mm from the center of the native footprint compared to 5.3 ± 2.0 mm for the IO technique ( P = .65). The femoral tunnel angle in the coronal plane was 21.0° ± 9.9° for the OI technique and 37.0° ± 10.3° for the IO technique ( P = .002). The tunnel angle in the axial plane was 27.3° ± 4.8° for the OI technique and 39.1° ± 11.5° for the IO technique ( P = .01). Conclusion: This study demonstrates no difference in the ability of the OI and IO techniques to place the femoral tunnel within the PCL femoral footprint during PCL reconstruction. With the technique parameters used in this study, the IO technique created femoral tunnels with a more vertical and anterior orientation than the OI technique. Clinical Relevance: Either technique can be used to place the femoral tunnel within the anatomic footprint. Consideration should be given to tunnel orientation following each technique, and what effect it has on graft bending angles, as these characteristics may affect graft strain and, ultimately, graft failure. In this regard, the IO technique likely produces gentler graft bending angles.

Author(s):  
Tsuneari Takahashi ◽  
Tomohiro Saito ◽  
Tatsuya Kubo ◽  
Ko Hirata ◽  
Hideaki Sawamura ◽  
...  

AbstractFew studies have determined whether a femoral bone tunnel could be created behind the resident's ridge by using a transtibial (TT) technique-single bundle (SB)-anterior cruciate ligament (ACL) reconstruction. The aim of this study was to clarify (1) whether it is possible to create a femoral bone tunnel behind the resident's ridge by using the TT technique with SB ACL reconstruction, (2) to define the mean tibial and femoral tunnel angles during anatomic SB ACL reconstruction, and (3) to clarify the tibial tunnel inlet location when the femoral tunnel is created behind resident's ridge. Arthroscopic TT-SB ACL reconstruction was performed on 36 patients with ACL injuries. The point where 2.4-mm guide pin was inserted was confirmed, via anteromedial portal, to consider a location behind the resident's ridge. Then, an 8-mm diameter femoral tunnel with a 4.5-mm socket was created. Tunnel positions were evaluated by using three-dimensional computed tomography (3D-CT) 1 week postoperatively. Quadrant method and the resident's ridge on 3D-CT were evaluated to determine whether femoral tunnel position was anatomical. Radiological evaluations of tunnel positions yielded mean ( ±  standard deviation) X- and Y-axis values for the tunnel centers: femoral tunnel, 25.2% ± 5.1% and 41.6% ± 10.2%; tibial tunnel, 49.2% ± 3.5%, and 31.5% ± 7.7%. The bone tunnels were anatomically positioned in all cases. The femoral tunnel angle relative to femoral axis was 29.4 ± 5.5 degrees in the coronal view and 43.5 ± 8.0 degrees in the sagittal view. The tibial tunnel angle relative to tibial axis was 25.5 ± 5.3 degrees in the coronal view and 52.3 ± 4.6 degrees in the sagittal view. The created tibial bone tunnel inlet had an average distance of 13.4 ± 2.7 mm from the medial tibial joint line and 9.7 ± 1.7 mm medial from the axis of the tibia. Femoral bone tunnel could be created behind the resident's ridge with TT-SB ACL reconstruction. The tibial bone tunnel inlet averaged 13.4 mm from the medial tibial joint line and 9.7 mm medial from the tibia axis.


2021 ◽  
Vol 27 ◽  
pp. 107602962110305
Author(s):  
Pu Ying ◽  
Wenge Ding ◽  
Xiaowei Jiang ◽  
Yue Xu ◽  
Yi Xue ◽  
...  

We evaluated the risk factors of deep venous thrombosis (DVT) after knee arthroscopic posterior cruciate ligament (PCL) reconstruction in patients with only PCL injury. From August 2014 to December 2020, a total of 172 patients who had accepted knee arthroscopic PCL reconstruction underwent the color Doppler ultrasound of bilateral lower-extremities deep veins on 3 days postoperatively. Based on the inspection results, patients were divided into DVT group (18 males and 8 females, mean age 43.62 years) and non-DVT group (108 males and 38 females, mean age 33.96 years). The potential associations of DVT risk and age, gender, body mass index (BMI), diabetes, hypertension, smoking and other factors were analyzed. An old age (OR = 1.090; 95% CI = 1.025-1.158; P = 0.006), a high BMI (OR = 1.509; 95% CI = 1.181-1.929; P = 0.001) and an increased post-surgery D-dimer (OR = 5.034; 95% CI = 2.091-12,117; P ≤ 0.001) value were significantly associated with an elevated DVT risk after knee arthroscopic PCL reconstruction. Increased age, BMI, and postoperative D-dimer were risk factors of DVT following knee arthroscopic PCL reconstruction in patients with only PCL injury.


2014 ◽  
Vol 2 (11_suppl3) ◽  
pp. 2325967114S0012
Author(s):  
Cem Coşkun Avcı ◽  
Hüseyin Koca ◽  
Necdet Sağlam ◽  
Tuhan Kurtulmuş ◽  
Gürsel Saka

Objectives: Recent studies have demonstrated that ACL reconstruction via anatomic tunnel placement would provide superior stability. In order to achieve an anatomic femoral tunnel, accessory anteromedial portal (three-portal tecnique) and medial Hoffa excision is necessary. Femoral tunnel drilling through a far anteromedial portal facilitates anatomic tunnel placement but can also results in shorter femoral tunnel and articular cartilage damage of the medial femoral condyle. Our purpose in this study was to evaluate whether an anatomic single bundle ACL reconstruction can be performed with the use of the two standart portals (anteromedial and anterolateral). Methods: Fifty seven patient underwent single bundle ACL reconstruction in our clinic between 2012-2014, with the use of either standart portals or three-portal tecnique. We measured the tunnel length and and femoral tunnel angle in coronal plane to assess the reconstruction. Two portals group included thirty -three patients (twenty-nine males, four females with a mean age of 27±2,4) and three portals group included twenty–four patients (twenty-three males, one female with a mean age of 26±2,9). All patients were evaluated with computerized tomography (CT) scans to determine femoral tunnel length and obliquity. Tunnel length was defined as the distance between the intra-articular and extra-articular tunnel apertures in coronal sections. Femoral tunnel angle was measured in the coronal plane on AP radiographs of the knee. For statistical analysis, student t test was used for normal categorical data. A p value of <0.05 was considered significant. Results: Average tunnel length was 44.2 ±6.8 mm (range: 32.6-55.2) in two portals group and 32.8±7.9 mm (range: 24.8-43.2) in three portal group. The average tunnel length in three portal group was significantly smaller (p<0.05). According to radiographic measurement on the AP view, femoral tunnel angle averaged 48.20±7.10 (range:38.60-56.10) in two portals group and 47.20±6,30 (range: 39.40-55.20) in three portals group. This difference was not statistically significant (p=0.2). Conclusion: Femoral tunnels drilled with standart two-portal tecnique were longer than three-portal tecnique. However, femoral tunnel angles was not different in two groups. Tunnel characteristic in terms of anatomic position was obtained with standart two-portal tecnique. Consequently, femoral tunnels can be placed anatomically with standart portals.


The Knee ◽  
2022 ◽  
Vol 34 ◽  
pp. 118-123
Author(s):  
Sabrina Sandriesser ◽  
Katarina Ruehlicke ◽  
Peter Augat ◽  
Daniel Hensler

Author(s):  
Stockton Troyer ◽  
Nicolas G Anchustegui ◽  
Connor G Richmond ◽  
Peter C Cannamela ◽  
Aleksei Dingel ◽  
...  

BackgroundAnatomic studies of the paediatric posterior cruciate ligament (PCL) demonstrate that the tibial attachment spans the epiphysis, physis and metaphysis. To better reproduce the anatomy of the PCL and avoid direct physeal injury, a double-bundle PCL reconstruction technique that includes both an all-epiphysial and an all-metaphyseal tibial tunnel has been proposed. The purpose of this study was to evaluate tibial tunnel placement in a paediatric double-bundle PCL reconstruction technique that avoids direct physeal injury using a 3-D computer model.MethodsTen skeletally immature cadaveric knee specimens (ages 5–11) were used to create 3-D model reconstructions from CT scans. All-metaphyseal and all-epiphysial tibial tunnels were simulated with the goal of maintaining adequate spacing (≥2 mm) between the tibial physis and tunnels to avoid injury. The all-metaphyseal tunnel, simulated at sizes of 5, 6 and 7 mm, entered anteriorly, below the tibial tubercle (apophysis) and exited posteriorly in the metaphyseal PCL footprint, distal to the proximal tibial physis. Four-millimetre all-epiphysial proximal tibial tunnels were simulated to enter the epiphysis anteromedially and exit posteriorly at the central epiphysial region of the PCL footprint, proximal to the physis. The distance was measured from the all-metaphyseal tunnels to the physis posteriorly and from the all-epiphysial tunnels to the physis, both anteriorly and posteriorly.ResultsIn all specimens, the 4 mm all-epiphysial tunnel and the 5, 6 and 7 mm all-metaphyseal tunnels maintained adequate spacing, ≥2 mm from the physis. In the specimens aged 5–7 years, the 5, 6 and 7 mm all-metaphyseal tunnels measured a mean distance of 3.5, 2.8 and 2.5 mm from the physis, respectively. In the specimens aged 8–11 years, the 5, 6 and 7 mm all-metaphyseal tunnels measured a mean distance of 3.4, 2.9 and 2.6 mm from the physis. In the specimens aged 5–7 years, the all-epiphysial tunnel measured a mean of 2.1 mm to the physis anteriorly and a mean of 2.8 mm posteriorly. In the specimens aged 8–11 years, the all-epiphysial tunnel measured a mean of 2.2 mm to the physis anteriorly and 2.4 mm posteriorly.ConclusionThese computer-aided 3-D models of paediatric knees illustrate that 5, 6 and 7 mm all-metaphyseal tunnels as well as 4 mm all-epiphysial tunnels can be placed without direct injury to the proximal tibial physis. The margin of error for direct physeal injury is small, especially for the all-epiphysial tunnel. Further, the all-epiphysial tunnel, while reproducing the anatomy of the PCL epiphysial attachment, may also produce a more extreme ‘killer turn’ of the graft. Modifications to the all-epiphysial tunnel may be considered to reduce the impact of the high ‘killer turn’ angle on the tibia.Level of evidenceIV.


Sign in / Sign up

Export Citation Format

Share Document