scholarly journals Posterior Tibial Slope Angle Correlates With Peak Sagittal and Frontal Plane Knee Joint Loading During Robotic Simulations of Athletic Tasks

2016 ◽  
Vol 44 (7) ◽  
pp. 1762-1770 ◽  
Author(s):  
Nathaniel A. Bates ◽  
Rebecca J. Nesbitt ◽  
Jason T. Shearn ◽  
Gregory D. Myer ◽  
Timothy E. Hewett

Background: Tibial slope angle is a nonmodifiable risk factor for anterior cruciate ligament (ACL) injury. However, the mechanical role of varying tibial slopes during athletic tasks has yet to be clinically quantified. Purpose: To examine the influence of posterior tibial slope on knee joint loading during controlled, in vitro simulation of the knee joint articulations during athletic tasks. Study Design: Descriptive laboratory study. Methods: A 6 degree of freedom robotic manipulator positionally maneuvered cadaveric knee joints from 12 unique specimens with varying tibial slopes (range, −7.7° to 7.7°) through drop vertical jump and sidestep cutting tasks that were derived from 3-dimensional in vivo motion recordings. Internal knee joint torques and forces were recorded throughout simulation and were linearly correlated with tibial slope. Results: The mean (±SD) posterior tibial slope angle was 2.2° ± 4.3° in the lateral compartment and 2.3° ± 3.3° in the medial compartment. For simulated drop vertical jumps, lateral compartment tibial slope angle expressed moderate, direct correlations with peak internally generated knee adduction ( r = 0.60-0.65), flexion ( r = 0.64-0.66), lateral ( r = 0.57-0.69), and external rotation torques ( r = 0.47-0.72) as well as inverse correlations with peak abduction ( r = −0.42 to −0.61) and internal rotation torques ( r = −0.39 to −0.79). Only frontal plane torques were correlated during sidestep cutting simulations. For simulated drop vertical jumps, medial compartment tibial slope angle expressed moderate, direct correlations with peak internally generated knee flexion torque ( r = 0.64-0.69) and lateral knee force ( r = 0.55-0.74) as well as inverse correlations with peak external torque ( r = −0.34 to −0.67) and medial knee force ( r = −0.58 to −0.59). These moderate correlations were also present during simulated sidestep cutting. Conclusion: The investigation supported the theory that increased posterior tibial slope would lead to greater magnitude knee joint moments, specifically, internally generated knee adduction and flexion torques. Clinical Relevance: The knee torques that positively correlated with increased tibial slope angle in this investigation are associated with heightened risk of ACL injury. Therefore, the present data indicated that a higher posterior tibial slope is correlated to increased knee loads that are associated with heightened risk of ACL injury.

2018 ◽  
Vol 27 (9) ◽  
pp. 2994-3000 ◽  
Author(s):  
Hiroshi Watanabe ◽  
Tokifumi Majima ◽  
Kenji Takahashi ◽  
Norishige Iizawa ◽  
Yasushi Oshima ◽  
...  

2019 ◽  
Vol 7 (3_suppl) ◽  
pp. 2325967119S0013
Author(s):  
Nicolas G. Anchustegui ◽  
Audrey Rustad ◽  
Cooper Shea ◽  
Stockton Troyer ◽  
Aleksei Dingel ◽  
...  

Background: Recent research has identified posterior tibial slope as a risk factor for anterior cruciate ligament (ACL) injury, due to increased forces on the ACL with this tibial anatomy. Biomechanical studies suggest that altering a patient’s posterior tibial slope may lower the risk of ACL injury. Due to the presence of an open physis, guided growth may be used to reduce the posterior tibia slope in this high risk skeletally immature population. The primary purpose of this study was to quantify and measure the posterior tibial slope in pediatric knees. Methods: Forty-four pediatric knee CT scans were analyzed using OsiriX, an imaging software. Specimens analyzed were between the ages of 2 and 12 years of age. The proximal tibial slope for each specimen was measured on CT scan sagittal slices at 2 locations: 1) At the medial tibial plateau at the mid region of the medial femoral condyle, as determined on a coronal slice through the femoral condyle; 2) At the lateral tibial plateau at the mid region of the lateral femoral condyle, as determined on the coronal slice through the femoral condyle. The measurement of the posterior tibial slope was determined by placing two lines parallel to the diaphysis of the tibia, one located in the middle of the diaphysis and one located at the most posterior aspect of the diaphysis. The most proximal aspect of both the medial and lateral tibial plateau were then identified and angle measurements were taken in reference to the parallel lines. The angle measurements were plotted graphically by age in order to account for variability in development within age groups. The anterior medial and lateral tibia plateau widths were measured by identifying the mid region of the respective plateaus. From this point, the distance between the top of the tibial plate and the physis was measured. Results: The average posterior tibial slope angle for the medial and lateral tibial plateau were (5.53° ± 4.17°) and (5.95° ± 3.96°) respectively. Independent samples t-test and ANOVA indicate the difference between the posterior tibial slope angle of the medial and lateral tibial plateau were not statistically significant (p < 0.05). When plotted graphically by age, a slight negative trend between age and posterior tibial slope was identified. As age increases, the medial and lateral posterior tibial slope decreases. The mean anterior medial tibial plateau width and lateral tibial plateau width were .99 cm and 1.19 cm respectively. Discussion/Conclusion: ACL primary and secondary injury occur at very high rates in the skeletally immature, especially in females at age 11 and older, and in males at age 13 and older. This data set offers some preliminary values for posterior tibial slope in patients without a history of ACL injury, allowing for comparisons to patients with ACL Injury. Increased tibial slope is a risk factor for ACL injury. In the skeletally immature, one option to alter the tibial slope is the use of guided growth with implants to slow the anterior growth of the proximal tibia, reducing the posterior slope of the tibia, and possibly lower the risk of ACL injury in this high-risk population. [Figure: see text][Figure: see text][Figure: see text][Figure: see text][Figure: see text][Table: see text][Table: see text]


2016 ◽  
Vol 4 (7_suppl4) ◽  
pp. 2325967116S0012
Author(s):  
Katherine M. Bojicic ◽  
Melanie L. Beaulieu ◽  
Daniel Imaizumi Krieger ◽  
James A. Ashton-Miller ◽  
Edward M. Wojtys

2021 ◽  
Author(s):  
Weipeng Shi ◽  
Yaping Jiang ◽  
Xuan Zhao ◽  
Haining Zhang ◽  
Yingzhen Wang ◽  
...  

Abstract Objective: To evaluate the effect of posterior tibial slope (PTS) on the mid-term clinical outcome following a medial-pivot (MP) prosthesis. Method: 233 patients from this hospital, who had undergone a total knee arthroplasty (TKA) with MP prosthesis between January 2015 and December 2015, were retrospectively included in this study. They were divided 3 groups according to postoperative PTS: A ≤ 5°; B 5-7° and C ≥ 7°. Multiple assessments were made on the patient postoperatively and recorded in the three groups, the measurements of this study included: The range of motion (ROM), knee scoring system (KSS), Western Ontario and McMaster universities osteoarthritis index (WOMAC), posterior condylar offset (PCO), joint line height and postoperative complications. Results: The average post-operative ROM for groups B and C were 108°and 110°respectively, this was significantly higher than that of group A (98°, P < 0.001). The WOMAC scores of patients in group C were significantly lower than those in groups A and B (p < 0.05). However, there were no significant differences in KSS, PCO, joint line height among the 3 groups (P>0.05). Only 2 cases of postoperative complications occurred in group C, these were recovered after operation. Conclusion: With an increase to PTS, the postoperative ROM can be significantly increased for the patient, however, the knee joint function will not be significantly improved, and the stability of knee joint will not be affected within the appropriate PTS.


Sign in / Sign up

Export Citation Format

Share Document