wedge high tibial osteotomy
Recently Published Documents


TOTAL DOCUMENTS

811
(FIVE YEARS 315)

H-INDEX

49
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Shoji Konda ◽  
Teruya Ishibashi ◽  
Masashi Tamaki ◽  
Kazuomi Sugamoto ◽  
Tetsuya Tomita

Abstract Three-dimensional preoperative surgical realignment simulation of medial open-wedge high tibial osteotomy (OWHTO), in which simplified as the rigid rotation around the hinge axis, has been performed to predict the postoperative change and to develop a patient specific instrument for accurate osteotomy. However, the realistic practicality of this extremely simplified simulation method has not been verified. The purpose of this study was to investigate the usefulness of realignment simulation, in which medial OWHTO is simplified as a rotation around a hinge axis, in comparison with a postoperative CT model. Three-dimensional surface model of the tibia and femur was created from preoperative computed-tomography (CT) images (preoperative model) of three patients. Sixty computer simulation models of the medial OWHTO in each patient were created by realignment simulation, in which medial OWHTO is simplified as the rigid rotation of proximal part of tibia relative to the distal part from 1 degree to 20 degrees around three type of hinge axes. The simulation models were compared with the actual postoperative model created from postoperative CT images to assess the reality of the simulation model. After the distal parts of the tibia between each simulation model and postoperative CT model were aligned by a surface registration, average surface distance between two models was calculated as an index representing the similarity of the simulation model to the postoperative model. The minimum average surface distance between the simulation and postoperative CT models were almost 1mm in each patient. The rotation angles at which the minimum average surface distance was represented were almost identical to the actual correction angles. Overlaying the simulation and the postoperative CT models, we found that the posterior tibial tilt and the axial rotation of the proximal tibia of the simulation model well represented that of the postoperative CT model as well as the valgus correction. Therefore, the realignment simulation of medial OWHTO simplified as the rigid rotation around the hinge axis can generate the realistic candidates of postoperative realignment that includes the actual postoperative realignment, suggesting the usefulness for the preoperative simulation method.


2022 ◽  
Vol 10 (1) ◽  
pp. 232596712110637
Author(s):  
Jakob Ackermann ◽  
Manuel Waltenspül ◽  
Christoph Germann ◽  
Lazaros Vlachopoulos ◽  
Sandro F. Fucentese

Background: Opening-wedge high tibial osteotomy (OWHTO) has been shown to significantly increase leg length, especially in patients with large varus deformity. Thus, the current literature recommends closing-wedge high tibial osteotomy to correct malalignment in these patients to prevent postoperative leg length discrepancy. However, potential preoperative leg length discrepancy has not been considered yet. Hypothesis: It was hypothesized that patients have a decreased preoperative length of the involved leg compared with the contralateral side and that OWHTO would subsequently restore native leg length. Study Design: Case series; Level of evidence, 4. Methods: Included were 67 patients who underwent OWHTO for unilateral medial compartment knee osteoarthritis and who received full leg length assessment pre- and postoperatively. Patients with varus or valgus deformity (>3°) of the contralateral side were excluded. A musculoskeletal radiologist assessed imaging for the mechanical axis, full leg length, and tibial length of the involved and contralateral lower extremity. Statistical analysis determined the pre- and postoperative leg length discrepancy and the influence of the mechanical axis. Results: Most patients (62.7%) had a decreased length of the involved leg, with a mean preoperative mechanical axis of 5.0° ± 2.9°. Length discrepancy averaged –2.2 ± 5.8 mm, indicating a shortened involved extremity ( P = .003). OWHTO significantly increased the mean lengths of the tibia and lower limb by 3.6 ± 2.9 and 4.4 ± 4.7 mm ( P < .001), leading to a postoperative tibial and full leg length discrepancy of 2.8 ± 4.3 mm and 2.2 ± 7.3 mm ( P < .001 and P = .017, respectively). Preoperative leg length discrepancy was significantly correlated with the preoperative mechanical axis of the involved limb ( r = 0.292; P = .016), and the amount of correction was significantly associated with leg lengthening after OWHTO ( r = 0.319; P = .009). Patients with a varus deformity of ≥6.5° (n = 14) had a preoperative length discrepancy of –4.5 ± 1.6 mm ( P < .001) that was reduced to 1.8 ± 3.5 mm ( P = .08). Conclusion: Patients undergoing OWHTO have a preoperative leg length discrepancy that is directly associated with the varus deformity of the involved extremity. As OWHTO significantly increases leg length, restoration of native leg length can be achieved particularly in patients with large varus deformity.


2021 ◽  
Vol 9 (12) ◽  
pp. 232596712110479
Author(s):  
Han Gyeol Choi ◽  
Yu Suhn Kang ◽  
Joo Sung Kim ◽  
Han Sang Lee ◽  
Yong Seuk Lee

Background: Assessments of the effects of realignment using opening-wedge high tibial osteotomy (OWHTO) on the medial, lateral, and patellofemoral compartments have been limited to cartilage evaluations. Purpose/Hypothesis: The purpose was to evaluate the effects of OWHTO on the meniscus and cartilage of each compartment as a cooperative unit (meniscochondral unit) using serial magnetic resonance imaging (MRI). It was hypothesized that (1) favorable changes in the meniscochondral unit would occur in the medial compartment and (2) that changes in the patellofemoral and lateral compartments would be negligible. Study Design: Case series; Level of evidence, 4. Methods: Included were 36 knees that underwent OWHTO from March 2014 to February 2016 and had postoperative serial MRI. The MRI was performed at 19.9 ± 7.4 and 52.3 ± 8.3 months postoperatively, and the cartilage and meniscal changes were evaluated by highlighting the regions of interest. We evaluated the T2 relaxation times of each cartilage and meniscal area, the cross-sectional area of the menisci, and the extrusion of the medial meniscus (MM). The meniscochondral unit was assessed using subgroup analyses according to the status of the MM. Results: Significant decreases were seen in T2 relaxation times in the medial femoral condyle (MFC) ( P < .001) and medial tibial plateau (MTP) ( P = .050), and significant increases were seen in the lateral femoral condyle (LFC) ( P = .036). The change was more prominent in the MFC compared with the MTP and LFC ( P = .003). No significant changes were observed in the lateral tibial plateau, patella, or trochlear groove. The area of the lateral meniscus (body and posterior horn) was decreased compared with preoperative MRI ( P < .001 for both). The extent of MM extrusion decreased between the preoperative, first follow-up, and second follow-up MRIs ( P < .001). Conclusion: OWHTO affected the medial compartment positively, the lateral compartment negatively, and the patellofemoral compartment negligibly. The effects were more prominent and consistent in the medial than in the lateral compartment.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Desheng Duan ◽  
Yang Cao ◽  
Renzeng Li ◽  
Guohui Wang ◽  
Yongfei Zhang ◽  
...  

Background. High tibial osteotomy (HTO) is used to treat medial degeneration of the osteoarthritis (OA) knee. However, shortcomings still exist in the current procedure, like unprecise creation, inability to correct knee rotation, and internal fixed failure. Here, we reported a novel procedure: patient-specific 3D-printed plates for opening wedge high tibial osteotomy (OWHTO) combined with Taylor spatial frame (TSF). The detailed technique was described, and the clinical outcomes were evaluated. Methods. We prospectively evaluate outcomes of patient-specific 3D-printed plates for OWHTO with use of TSF in 25 patients with knee OA and varus alignment. Postoperative efficacy was evaluated using the HSS knee score, pain visual simulation score (VAS), and knee joint motion (ROM), and lower limb alignment was evaluated by measuring femorotibial angle (FTA) and hip-knee-ankle (HKA). Results and Conclusion. All patients did not experience complications such as wound infection, nerve damage, or bone amputation. 25 patients were followed up for 6–18 months. The bony union at bone amputation was achieved in 3 months after surgery, and the pain symptoms were significantly alleviated or disappeared. The VAS score was significantly reduced in 6 months after surgery compared with preoperative; the HSSS score was significantly added in 6 months after surgery compared with preoperative. The ROM of knee joint increased significantly 6 months after operation compared with that before operation, and the difference was statically significant ( P < 0.05 ). The FTA and HKA after operation were significantly superior to that before operation, and the difference was statically significant ( P < 0.01 ). Conclusions. Our study showed that patient-specific 3D-printed plates for HTO with the use of TSF have the advantages of small trauma, few complications, simple operation, and fast recovery in treating knee OA and varus alignment.


Sign in / Sign up

Export Citation Format

Share Document