Large eddy simulation as a fast and accurate engineering approach for the simulation of rotary blood pumps

2021 ◽  
pp. 039139882110416
Author(s):  
Jia-Dong Huo ◽  
Peng Wu ◽  
Liudi Zhang ◽  
Wei-Tao Wu

An accurate representation of the flow field in blood pumps is important for the design and optimization of blood pumps. The primary turbulence modeling methods applied to blood pumps have been the Reynolds-averaged Navier–Stokes (RANS) or URANS (unsteady RANS) method. Large eddy simulation (LES) method has been introduced to simulate blood pumps. Nonetheless, LES has not been widely used to assist in the design and optimization of blood pumps to date due to its formidable computational cost. The purpose of this study is to explore the potential of the LES technique as a fast and accurate engineering approach for the simulation of rotary blood pumps. The performance of “Light LES” (using the same time and spatial resolutions as the URANS) and LES in two rotary blood pumps was evaluated by comparing the results with the URANS and extensive experimental results. This study showed that the results of both “Light LES” and LES are superior to URANS, in terms of both performance curves and key flow features. URANS could not predict the flow separation and recirculation in diffusers for both pumps. In contrast, LES is superior to URANS in capturing these flows, performing well for both design and off-design conditions. The differences between the “Light LES” and LES results were relatively small. This study shows that with less computational cost than URANS, “Light LES” can be considered as a cost-effective engineering approach to assist in the design and optimization of rotary blood pumps.

2017 ◽  
Author(s):  
Mikko Auvinen ◽  
Leena Järvi ◽  
Antti Hellsten ◽  
Üllar Rannik ◽  
Timo Vesala

Abstract. Conventional footprint models cannot account for the heterogeneity of the urban landscape imposing a pronounced uncertainty on the spatial interpretation of eddy-covariance (EC) flux measurements in urban studies. This work introduces a computational methodology that enables the generation of detailed footprints in arbitrarily complex urban flux measurements sites. The methodology is based on conducting high-resolution large-eddy simulation (LES) and Lagrangian stochastic (LS) particle analysis on a model that features a detailed topographic description of a real urban environment. The approach utilizes an arbitrarily sized target volume set around the sensor in the LES domain, to collect a dataset of LS particles which are seeded from the potential source-area of the measurement and captured at the sensor site. The urban footprint is generated from this dataset through a piecewise post-processing procedure, which divides the footprint evaluation into multiple independent processes that each yield an intermediate result that are ultimately selectively combined to produce the final footprint. The strategy reduces the computational cost of the LES-LS simulation and incorporates techniques to account for the complications that arise when the EC sensor is mounted on a building instead of a conventional flux tower. The presented computational framework also introduces a result assessment strategy which utilizes the obtained urban footprint together with a detailed land cover type dataset to estimate the potential error that may arise if analytically derived footprint models were employed instead. The methodology is demonstrated with a case study that concentrates on generating the footprint for a building-mounted EC measurement station in downtown Helsinki, Finland, under neutrally stratified atmospheric boundary layer.


Author(s):  
Y. See ◽  
M. Wang ◽  
J. Bohbot ◽  
O. Colin

Abstract The Species-Based Extended Coherent Flamelet Model (SB-ECFM) was developed and previously validated for 3D Reynolds-Averaged Navier-Stokes (RANS) modeling of a spark-ignited gasoline direct injection engine. In this work, we seek to extend the SB-ECFM model to the large eddy simulation (LES) framework and validate the model in a homogeneous charge spark-ignited engine. In the SB-ECFM, which is a recently developed improvement of the ECFM, the progress variable is defined as a function of real species instead of tracer species. This adjustment alleviates discrepancies that may arise when the numerical treatment of real species is different than that of the tracer species. Furthermore, the species-based formulation also allows for the use of second-order numeric, which can be necessary in LES cases. The transparent combustion chamber (TCC) engine is the configuration used here for validating the SB-ECFM. It has been extensively characterized with detailed experimental measurements and the data are widely available for model benchmarking. Moreover, several of the boundary conditions leading to the engine are also measured experimentally. These measurements are used in the corresponding computational setup of LES calculations with SB-ECFM. Since the engine is spark ignited, the Imposed Stretch Spark Ignition Model (ISSIM) is utilized to model this physical process. The mesh for the current study is based on a configuration that has been validated in a previous LES study of the corresponding motored setup of the TCC engine. However, this mesh was constructed without considering the additional cells needed to sufficiently resolve the flame for the fired case. Thus, it is enhanced with value-based Adaptive Mesh Refinement (AMR) on the progress variable to better capture the flame front in the fired case. As one facet of model validation, the ensemble average of the measured cylinder pressure is compared against the LES/SB-ECFM prediction. Secondly, the predicted cycle-to-cycle variation by LES is compared with the variation measured in the experimental setup. To this end, the LES computation is required to span a sufficient number of engine cycles to provide statistical convergence to evaluate the coefficient of variation (COV) in peak cylinder pressure. Due to the higher computational cost of LES, the runtime required to compute a sufficient number of engine cycles sequentially can be intractable. The concurrent perturbation method (CPM) is deployed in this study to obtain the required number of cycles in a reasonable time frame. Lastly, previous numerical and experimental analyses of the TCC engine have shown that the flow dynamics at the time of ignition is correlated with the cycle-to-cycle variability. Hence, similar analysis is performed on the current simulation results to determine if this correlation effect is well-captured by the current modeling approach.


2013 ◽  
Vol 136 (6) ◽  
Author(s):  
James Tyacke ◽  
Paul Tucker ◽  
Richard Jefferson-Loveday ◽  
Nagabushana Rao Vadlamani ◽  
Robert Watson ◽  
...  

Flows throughout different zones of turbines have been investigated using large eddy simulation (LES) and hybrid Reynolds-averaged Navier–Stokes-LES (RANS-LES) methods and contrasted with RANS modeling, which is more typically used in the design environment. The studied cases include low and high-pressure turbine cascades, real surface roughness effects, internal cooling ducts, trailing edge cut-backs, and labyrinth and rim seals. Evidence is presented that shows that LES and hybrid RANS-LES produces higher quality data than RANS/URANS for a wide range of flows. The higher level of physics that is resolved allows for greater flow physics insight, which is valuable for improving designs and refining lower order models. Turbine zones are categorized by flow type to assist in choosing the appropriate eddy resolving method and to estimate the computational cost.


Author(s):  
Karsten Hasselmann ◽  
Stefan aus der Wiesche

In this contribution, a Large-Eddy Simulation (LES) analysis was carried out, to get detailed information about the unsteady flow behavior and loss generation in a turbine cascade at moderate Reynolds numbers. A comprehensive comparison study with experimental data was conducted to validate the LES results. Compared to Reynolds averaged Navier-Stokes (RANS) results, the LES shows a much better agreement with the measured values of the profile loss coefficient, downstream velocity profile, and blade pressure distribution. The unsteady separation and reattachment process was covered well by the LES approach. The power spectral density (PSD) profiles at several positions of the downstream wake were compared and analyzed. Although the results of the LES show mainly a good agreement with the experimental values, there are still some deviations at high frequency. In summery the present case study indicates the high potential of LES especially in case of moderate Reynolds numbers with flow separation.


Author(s):  
Sourabh V. Apte ◽  
Mikhael Gorokhovski ◽  
Parviz Moin

Large-eddy simulation (LES) of reacting multi-phase flows in practical combustor geometries is essential to accurately predict complex physical phenomena of turbulent mixing and combustion dynamics. This necessitates use of Lagrangian particle-tracking methodology for liquid phase in order to correctly capture the droplet evaporation rates in the sparse-liquid regime away from the fuel injector. Our goal in the present work is to develop a spray-atomization methodology which can be used in conjuction with the standard particle-tracking schemes and predict the droplet-size distribution accurately. The intricate process of primary atomization and lack of detailed experimental observations close to the injector requires us to model its global effects and focus on secondary breakup to capture the evolution of droplet sizes. Accordingly, a stochastic model for LES of atomizing spray is developed. Following Kolmogorov’s idea of viewing solid particle-breakup as a discrete random process, atomization of liquid blobs at high relative liquid-to-gas velocity is considered in the framework of uncorrelated breakup events, independent of the initial droplet size. Kolmogorov’s discrete model of breakup is represented by Fokker-Planck equation for the temporal and spatial evolution of droplet radius distribution. The parameters of the model are obtained dynamically by relating them to the local Weber number. A novel hybrid-approach involving tracking of individual droplets and a group of like-droplets known as parcels is developed to reduce the computational cost and maintain the essential features and dynamics of spray evolution. The present approach is shown to capture the complex fragmentary process of liquid atomization in idealized and realistic Diesel and gas-turbine combustors.


2012 ◽  
Vol 5 (1) ◽  
pp. 1-10
Author(s):  
Leiyong Jiang ◽  
Ian Campbell

Large eddy simulation (LES) is a promising method for numerical simulation in combustion systems. A LES attempt in a model combustor has been made, and a few important issues related to grid size, inflow condition, wall boundary conditions, physical sub-models and data sampling are discussed. Some of the numerical results are presented and compared with a comprehensive experimental database, which indicates that LES can provide reasonable predictions for the mean axial velocity and temperature distributions inside the combustion chamber. However, in order to make LES a valuable and cost-effective tool in the development of advanced combustion systems, some fundamental questions remain to be addressed and more validation efforts are required. Moreover significant computing power is required for LES to capture both the high and low frequencies of interest in the present turbulent reacting flow.


2018 ◽  
Vol 11 (10) ◽  
pp. 4069-4084 ◽  
Author(s):  
Fabien Margairaz ◽  
Marco G. Giometto ◽  
Marc B. Parlange ◽  
Marc Calaf

Abstract. Aliasing errors arise in the multiplication of partial sums, such as those encountered when numerically solving the Navier–Stokes equations, and can be detrimental to the accuracy of a numerical solution. In this work, a performance and cost analysis is proposed for widely used dealiasing schemes in large-eddy simulation, focusing on a neutrally stratified, pressure-driven atmospheric boundary-layer flow. Specifically, the exact 3∕2 rule, the Fourier truncation method, and a high-order Fourier smoothing method are intercompared. Tests are performed within a newly developed mixed pseudo-spectral finite differences large-eddy simulation code, parallelized using a two-dimensional pencil decomposition. A series of simulations are performed at varying resolution, and key flow statistics are intercompared among the considered runs and dealiasing schemes. The three dealiasing methods compare well in terms of first- and second-order statistics for the considered cases, with modest local departures that decrease as the grid stencil is reduced. Computed velocity spectra using the 3∕2 rule and the FS method are in good agreement, whereas the FT method yields a spurious energy redistribution across wavenumbers that compromises both the energy-containing and inertial sublayer trends. The main advantage of the FS and FT methods when compared to the 3∕2 rule is a notable reduction in computational cost, with larger savings as the resolution is increased (15 % for a resolution of 1283, up to a theoretical 30 % for a resolution of 20483).


Sign in / Sign up

Export Citation Format

Share Document