Flexural, Compressive, and Interlaminar Shear Strength Properties of Kapok/Glass Composites

2008 ◽  
Vol 28 (14) ◽  
pp. 1665-1677 ◽  
Author(s):  
G. Venkata Reddy ◽  
T. Shobha Rani ◽  
K. Chowdoji Rao ◽  
S. Venkata Naidu
2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Srinivas Shenoy Heckadka ◽  
Suhas Yeshwant Nayak ◽  
Karan Narang ◽  
Kirti Vardhan Pant

Polymer matrix composites are one of the materials being extensively researched and are gaining a lot of importance due to advantages like high specific strength, greater flexibility in design, and reduced cost of manufacturing. In this study, tensile, flexural, impact, and interlaminar shear strength of chopped strand/plain weave E-glass composites were considered. Composite laminates with different stacking sequence were fabricated using Vacuum Assisted Resin Infusion Moulding (VARIM) technique. Fiber volume fractions (FVF) of 22%, 26%, and 30% were adopted. Experiments were conducted in accordance with ASTM standards. Results indicate that laminates with three layers of plain weave mat exhibited better tensile, flexural, and interlaminar shear strength. However, laminates with two layers of chopped strand mat and one layer of plain weave mat showed improved impact resistance. In addition, scanning electron microscopy was used to analyze the fracture surface.


2011 ◽  
Vol 5 (3) ◽  
pp. 238-245 ◽  
Author(s):  
P. Jaeschke ◽  
M. Kern ◽  
U. Stute ◽  
H. Haferkamp ◽  
C. Peters ◽  
...  

2013 ◽  
Vol 750 ◽  
pp. 108-111
Author(s):  
Hitoshi Takagi ◽  
Hirohito Matsukawa ◽  
Antonio Norio Nakagaito

In this paper, the interlaminar shear strength properties of laminated binderless bamboo composites is described. The binderless bamboo composites were prepared by hot-pressing of steam-exploded Moso bamboo stripes. In order to explore the effect of node section on the mechanical properties of the laminated binderless bamboo composites, the node section was flattened by shaving the nodes off. The result of our experiment clearly shows that the shear strength of the laminated binderless bamboo composites increased by flattening of the node section.


2021 ◽  
pp. 096739112098651
Author(s):  
Saeedeh Saadatyar ◽  
Mohammad Hosain Beheshty ◽  
Razi Sahraeian

Unidirectional carbon fiber-reinforced epoxy (UCFRE) is suffering from weak transverse mechanical properties and through-thickness properties. The effect of different amount (0.1, 0.3 and 0.5 phr which is proportional to 0.09, 0.27 and 0.46 wt%, respectively) of multiwall carbon nanotube (MWCNT), on transverse tensile properties, flexural strength, fracture toughness in transverse and longitudinal fiber directions, interlaminar shear strength and lap shear strength of UCFRE has been investigated. Dicyandiamide was used as a thermal curing agent of epoxy resin. MWCNT was dispersed in the epoxy resin by ultrasonic instrument and their dispersion state was investigated by scanning electron microscopy (SEM). The curing behavior of epoxy resin and its nanocomposites was assessed by differential scanning calorimetry. Results show that transverse tensile strength, modulus and strain-at-break were increased by 28.5%, 25% and 14%, respectively by adding 0.1 phr of MWCNT. Longitudinal flexural properties of UCFRE was not changed by adding different amount of MWCNT. Although longitudinal flexural strength was increased by 5% by adding 0.1 phr of MWCNT. Fracture toughness in transverse and longitudinal fiber directions was increased by 39% and 9%, respectively at 0.3 phr of MWCNT. Results also show that interlaminar shear strength and lap shear strength were increased at 0.3 phr of MWCNT by 8% and 5%, respectively. These increases in mechanical properties were due to the good adhesion of fibers to the matrix, interlocking and toughening action of MWCNT as revealed by SEM.


2021 ◽  
Vol 266 ◽  
pp. 113779
Author(s):  
Qiuyu Miao ◽  
Zhihong Dai ◽  
Guangyi Ma ◽  
Fangyong Niu ◽  
Dongjiang Wu

2009 ◽  
Vol 79-82 ◽  
pp. 497-500 ◽  
Author(s):  
Lei Chen ◽  
Zhi Wei Xu ◽  
Jia Lu Li ◽  
Xiao Qing Wu ◽  
Li Chen

The γ-ray co-irradiation method was employed to study the effect of diethanolamine modification on the surface of carbon fiber (CF) and the interfacial properties of CF/epoxy composites. Compared with the original carbon fiber, the surface of modified fibers became rougher. The amount of oxygen-containing functional groups was increased and the nitrogen element was detected after irradiation grafting. The interlaminar shear strength (ILSS) of composites reinforced by carbon fibers irradiated in diethanolamine solution was increased and then decreased as the irradiation dose increased. The ILSS of CF/epoxy composites was enhanced by 16.1% at 200kGy dose, compared with that of untreated one. The γ-ray irradiation grafting is expected to be a promising method for the industrialized modification of carbon fibers.


Sign in / Sign up

Export Citation Format

Share Document