Adaptation of small capacity natural gas engine for producer gas operation

Author(s):  
S Dasappa ◽  
G Sridhar ◽  
P J Paul

This article addresses the adaptation of a low-power natural gas engine for using producer gas as a fuel. The 5.9 L natural gas engine with a compression ratio of 10.5:1, rated at 55 kW shaft power, delivered 30 kW using producer gas as fuel in the naturally aspirated mode. Optimal ignition timing for peak power was found to be 20° before top dead centre. Air-to-fuel ratio (A/F) was found to be 1.2 ± 0.1 over a range of loads. Critical evaluation of the energy flows in the engine resulted in identifying losses and optimizing the engine cooling. The specific fuel consumption was found to be 1.2 ± 0.1 kg of biomass per kilowatt hour. A reduction of 40 per cent in brake mean effective pressure was observed compared with natural gas operation. Governor response to load variations has been studied with respect to frequency recovery time. The study also attempts to adopt a turbocharger for higher power output. Preliminary results suggest a possibility of about 30 per cent increase in the output.

Author(s):  
C R Stone ◽  
K J S Mentis ◽  
M Daragheh

Natural gas is an alternative fuel that has potential for low emissions and a high efficiency. This paper presents the experimental results and predictions from a computer simulation of a fast burn high compression ratio (FBHCR) combustion system intended for use in a lean burn natural gas engine. Comparisons are made between the FBHCR combustion system at two compression ratios, predictions made by a two-zone combustion model and measurements from the original combustion system, for the brake efficiency, brake mean effective pressure, maximum cylinder pressure and the brake specific NOx emissions. Experimental measurements of the unburnt hydrocarbon emissions, the burn duration and the cycle-by-cycle variations in combustion are also discussed from the original and fast burn combustion systems. The results show how the conflicting aims of low emissions and low fuel consumption can be satisfied using a lean burn combustion system. The computer predictions are shown to be reliable, and thus suitable for estimating the performance of other engine builds.


2017 ◽  
Author(s):  
Robert Draper ◽  
Brendan Lenski ◽  
Franz-Joseph Foltz ◽  
Roderick Beazley ◽  
William Tenny

Fuel ◽  
2022 ◽  
Vol 313 ◽  
pp. 122857
Author(s):  
Zhongshu Wang ◽  
Xing Su ◽  
Xiaoyan Wang ◽  
Demin Jia ◽  
Dan Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document