Large eddy simulation of turbulent axially rotating pipe and swirling jet flows

Author(s):  
Nicolas D Castro ◽  
Ayodeji O Demuren

Fully-developed, turbulent rotating pipe flow and swirling jet flow, emitted from the pipe, into open quiescent ambient are investigated numerically using large eddy simulation. Simulations are performed at various rotation rates and Reynolds numbers. Time-averaged large eddy simulation results are compared to experimental and simulation data from previous studies. Pipe flow results show deformation of the turbulent mean axial velocity profile towards the laminar-type Poiseuille profile, with increased rotation. The Reynolds stress anisotropy tensor experiences a component-level redistribution due to pipe rotation. Turbulent energy is transferred from the axial component to the tangential component as rotation is increased. The Reynolds stress anisotropy invariant map also shows a movement away from the one-component limit in the buffer layer, with increased rotation. Exit conditions for the pipe flow simulation are utilized as inlet conditions for the jet flow simulation. Jet flow without swirl and at a swirl rate of S = 0.5 are investigated. Swirl is observed to change the characteristics of the jet flow field, leading to increased jet spread and velocity decay, and a corresponding decrease in the length of the jet potential core. The Reynolds stress anisotropy invariant map shows that the turbulent stress field, with or without rotation straddles the axi-symmetric limit.

2020 ◽  
Vol 12 (1) ◽  
pp. 39-53
Author(s):  
M. S. I. Mallik ◽  
M. A. Hoque ◽  
M. A. Uddin

This paper presents results of comparative study of large eddy simulation (LES) that is applied to a plane turbulent channel flow. The LES is performed by using a finite difference method of second order accuracy in space and a low-storage explicit Runge-Kutta method with third order accuracy in time. In the LES for subgrid-scale (SGS) modelling, Standard Smagorinsky Model (SSM) and Dynamic Smagorinsky Model (DSM) are used. Essential turbulence statistics from the two LES approaches are calculated and compared with those from direct numerical simulation (DNS) data. Comparing the results throughout the calculation domain, it has been found out that SSM performs better than DSM in the turbulent channel flow simulation. Flow structures in the computed flow field by the SSM and DSM are also discussed and compared through the contour plots and iso-surfaces.


Author(s):  
Susumu Teramoto ◽  
Takuya Ouchi ◽  
Hiroki Sanada ◽  
Koji Okamoto

Fully resolved large eddy simulation (LES) is applied to two simple geometry flowfields with well-defined boundary conditions. The LES results are compared with simulations based on a Reynolds-averaged Navier-Stokes (RANS) model with turbulence, and pros and cons of using high-resolution LES for turbomachinery flows are discussed. One flow is a linear compressor cascade flow composed of the tip section of GE rotor B at Rec = 4 × 105 with a clearance, and the other is a Mach 1.76 supersonic turbulent boundary layer at Reδ = 5000 that laminerizes through a 12-degree expansion corner. The grids are prepared fine enough to resolve the turbulent boundary layer through a grid sensitivity study. The liner cascade result shows that all the turbulent shear layers and boundary layers including those in the small tip clearance are well resolved with 800 million grid points. The Reynolds stress derived from the LES results are compared directly with those predicted from the Spalart-Allmaras one-equation RANS turbulence model. The two results agreed qualitatively well except for the shear layer surrounding the tip leakage vortex, demonstrating that the RANS model performs well at least for flowfields near the design condition. From the simulation of the turbulent boundary layer experiencing sudden expansion, noticeable decreases of both Reynolds stress and local friction coefficient were observed, showing that the turbulent boundary layer has relaminarized through the sudden expansion. The boundary layer downstream of the expansion exhibits a nonequilibrium condition and was different from the laminar boundary layer.


2016 ◽  
Vol 8 ◽  
pp. 10-12 ◽  
Author(s):  
B.T. Kannan ◽  
P. Ssheshan ◽  
Sundararaj Senthilkumar

Sign in / Sign up

Export Citation Format

Share Document