Modified couple stress theory and finite strain assumption for nonlinear free vibration and bending of micro/nanolaminated composite Euler–Bernoulli beam under thermal loading

Author(s):  
Masood Mohandes ◽  
Ahmad Reza Ghasemi

In this paper, the effect of finite strain on the nonlinear free vibration and bending of the symmetrically micro/nanolaminated composite beam under thermal environment within the framework of the Euler–Bernoulli and modified couple stress theory is studied. The governing equation of motion and boundary conditions are obtained using Hamilton’s principle, and then they are solved by generalized differential quadrature method. The bending and free vibration of the beam are investigated for both carbon/epoxy and glass/epoxy materials based on the finite strain and von Karman assumptions subjected to different boundary conditions. Also, two different fiber orientations including unidirectional and cross-ply are considered in this research. Comparison of the bending results show that there is a significant difference between the finite strain and von Karman particularly for [Formula: see text]. Furthermore, it is found that the natural frequencies predicted by the finite strain are more than the von Karman. Also, when the microbeam is inserted under thermal loading, the natural frequencies increase.

2012 ◽  
Vol 04 (03) ◽  
pp. 1250026 ◽  
Author(s):  
J. V. ARAÚJO DOS SANTOS ◽  
J. N. REDDY

A model based on a modified couple stress theory for the free vibration and buckling analyses of beams is presented. The model also incorporates the Poisson's effect and allows the analysis of Timoshenko beams with any arbitrary end boundary condition. The natural frequencies and buckling loads are computed using the Ritz method. Parametric studies show that, while the natural frequencies and the buckling loads increase monotonically with the increase of the material length scale, they present a minimum in certain values of the Poisson's ratio. A study relating the classical elasticity and the couple stress strain energies is also presented. By establishing this relation, explicit formulas to obtain the natural frequencies and buckling loads, in which the couple stress and Poisson's effects are accounted for, in terms of the buckling loads of the classical elasticity are found. These formulas, which are valid when the shear strain and stress are zero, allow an expedite computation of natural frequencies and buckling loads of beams with couple stress and Poisson's effect.


2021 ◽  
pp. 107754632110482
Author(s):  
J Ranjan Banerjee ◽  
Stanislav O Papkov ◽  
Thuc P Vo ◽  
Isaac Elishakoff

Several models within the framework of continuum mechanics have been proposed over the years to solve the free vibration problem of micro beams. Foremost amongst these are those based on non-local elasticity, classical couple stress, gradient elasticity and modified couple stress theories. Many of these models retain the basic features of the Bernoulli–Euler or Timoshenko–Ehrenfest theories, but they introduce one or more material scale length parameters to tackle the problem. The work described in this paper deals with the free vibration problems of micro beams based on the dynamic stiffness method, through the implementation of the modified couple stress theory in conjunction with the Timoshenko–Ehrenfest theory. The main advantage of the modified couple stress theory is that unlike other models, it uses only one material length scale parameter to account for the smallness of the structure. The current research is accomplished first by solving the governing differential equations of motion of a Timoshenko–Ehrenfest micro beam in free vibration in closed analytical form. The dynamic stiffness matrix of the beam is then formulated by relating the amplitudes of the forces to those of the corresponding displacements at the ends of the beam. The theory is applied using the Wittrick–Williams algorithm as solution technique to investigate the free vibration characteristics of Timoshenko–Ehrenfest micro beams. Natural frequencies and mode shapes of several examples are presented, and the effects of the length scale parameter on the free vibration characteristics of Timoshenko–Ehrenfest micro beams are demonstrated.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
R. Ansari ◽  
M. A. Ashrafi ◽  
S. Hosseinzadeh

The vibration behavior of piezoelectric microbeams is studied on the basis of the modified couple stress theory. The governing equations of motion and boundary conditions for the Euler-Bernoulli and Timoshenko beam models are derived using Hamilton’s principle. By the exact solution of the governing equations, an expression for natural frequencies of microbeams with simply supported boundary conditions is obtained. Numerical results for both beam models are presented and the effects of piezoelectricity and length scale parameter are illustrated. It is found that the influences of piezoelectricity and size effects are more prominent when the length of microbeams decreases. A comparison between two beam models also reveals that the Euler-Bernoulli beam model tends to overestimate the natural frequencies of microbeams as compared to its Timoshenko counterpart.


2017 ◽  
Vol 24 (15) ◽  
pp. 3471-3486 ◽  
Author(s):  
Mehdi Mohammadimehr ◽  
S Javad Atifeh ◽  
Borhan Rousta Navi

In this article, stresses and free-vibration behaviors of annular circular piezoelectric nanocomposite plate reinforced by functionally graded single-walled boron nitride nanotubes (FG-SWBNNTs) embedded in an elastic foundation based on modified couple stress theory (MCST) are explored. The mechanical properties of FG-SWBNNT-reinforced nanocomposite plate are assumed to be graded in the direction of thickness and estimated through the micro-mechanical approach. The governing equations are obtained using the energy method. The natural frequencies and stresses of FG-SWBNNT-reinforced nanocomposite plate are computed using the differential quadrature method (DQM). An excellent agreement is observed between the obtained results and the results in the literature. Influences of the internal radius to the external radius, the thickness to the internal radius ratio, the material length scale parameter, the functionally graded parameter, temperature changes and elastic coefficients on the natural frequencies and stresses of the hollow circular nanocomposite plate are investigated. The results of this research show that the natural frequencies of the piezoelectric nanocomposite plate increase by increasing the material length scale parameter, the elastic foundation parameters, the ratio of the inner radius to the outer radius, the ratio of the thickness to the inner radius, and decreasing the power index and temperature change. The radial stress of the nanocomposite plate varies proportionally to its mode shape. The results can be employed to design smart structures in micro-electro-mechanical systems (MEMS).


Sign in / Sign up

Export Citation Format

Share Document