laminated beam
Recently Published Documents


TOTAL DOCUMENTS

217
(FIVE YEARS 58)

H-INDEX

17
(FIVE YEARS 5)

Author(s):  
Fayssal Djellali

In this work, we consider a thermoelastic laminated beam with structural damping, where the heat flux is given by Green and Naghdi theories. We establish the well-posedness of the system using semigroup theory. Moreover, under the condition of equal wave speeds, we prove an exponential stability result for the considered system. In the case of lack of exponential stability we show that the solution decays polynomially.


2022 ◽  
Vol 1212 (1) ◽  
pp. 012034
Author(s):  
S Maricar ◽  
K Sulendra ◽  
H Listiawaty ◽  
H O Baide

Abstract The development of utilization of low quality wood as construction material is needed to reduce the exploitation of natural forests. However, low quality wood species have disadvantages in terms of mechanical properties. The mechanical properties of Sengon wood are relatively low, so it does not qualify as a structural element. Therefore, the system glulam can be applied to overcome this problem. The system glulam can produce relatively light structural elements with adequate performance. This system has been extensively developed, even at the stage of applying external reinforcement, to improve the performance of structural laminated beams. On that basis, this study aims to determine the flexural strength of laminated beams of Sengon wood as a low quality wood species. In order to achieve this goal, the laminated beam was tested using method four point bending test method. Tests were carried out on long span laminated beams (L = 2750 mm) to observe flexural strength. There are five (5) laminated blocks tested, namely (BLS-1, BLS-2, BLS-3, BLS-4 and BLS-5). Each group has dimensions of 55 mm in width and 155 mm in height. Each specimen consists of six layers of wood boards with a density Falcata 0.3 g / cm3. The thickness of each layer was 26 mm and bonded with resin urea formaldehyde cold setting. Double-sided adhesive laying of 350 gr / m2 at a compressive force of 2 MPa. The analysis result shows that the load-deflection relationship between BS-L consists of linear and nonlinear phases. The load performance characteristics of the two types of laminated beams are expressed as the ratio of the proportional limit load to the maximum load. The ratio value is expressed in the form P eBL-s = 0.7P max BL-S andM eBL-s = 0.7M max BL-S. This form is similar to previous studies with a Pe to Pmax ratio of 0.80.9. In this case, the average flexural strength of the laminated beam is 17 MPa with a maximum strain of 0.004.


2021 ◽  
Vol 26 (4) ◽  
pp. 566-581
Author(s):  
Kassimu Mpungu ◽  
Tijani A. Apalara

In this article, we consider a system of laminated beams with an internal constant delay term in the transverse displacement. We prove that the dissipation through structural damping at the interface is strong enough to exponentially stabilize the system under suitable assumptions on delay feedback and coefficients of wave propagation speed.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6171
Author(s):  
Aimin Deng ◽  
Maosen Cao ◽  
Qitian Lu ◽  
Wei Xu

Identification of cracks in beam-type components is significant to ensure the safety of structures. Among the approaches relying on mode shapes, the concept of transverse pseudo-force (TPF) has been well proved for single and multiple crack identification in beams made of isotropic materials; however, there is a noticeable gap between the concept of TPF and its applications in composite laminated beams. To fill this gap, an enhanced TPF approach that relies on perturbation to dynamic equilibrium is proposed for the identification of multiple cracks in composite laminated beams. Starting from the transverse equation of motion, this study formulates the TPF in a composite laminated beam for the identification of multiple cracks. The capability of the approach is numerically verified using the FE method. The applicability of the approach is experimentally validated on a carbon fiber-reinforced polymer laminated beam with three cracks, the mode shapes of which are acquired through non-contact vibration measurement using a scanning laser vibrometer. In particular, a statistic manner is utilized to enable the approach to be feasible to real scenarios in the absence of material and structural information; besides, an integrating scheme is utilized to enable the approach to be capable of identifying cracks even in the vicinity of nodes of mode shapes.


2021 ◽  
Vol 33 (2) ◽  
Author(s):  
Adel M. Al-Mahdi ◽  
Mohammad M. Al-Gharabli ◽  
Salim A. Messaoudi

Mathematica ◽  
2021 ◽  
Vol 63 (86) (1) ◽  
pp. 58-76
Author(s):  
Douib Madani ◽  
Salah Zitouni ◽  
Djebabla Abdelhak

We study the well-posedness and asymptotic behaviour of solutions to a laminated beam in thermoelasticity of type III with delay term in the first equation. We show that the system is well-posed by using Lumer-Philips theorem and prove that the system is exponentially stable if and only if the wave speeds are equal.


2021 ◽  
Vol 1149 (1) ◽  
pp. 012002
Author(s):  
Sunita Danu ◽  
Nitish Kumar Saini ◽  
Deepak Prasad Nautiyal ◽  
Anadi Misra

Sign in / Sign up

Export Citation Format

Share Document