Experimental studies of heat transfer and flow regimes during flow boiling of water and alumina nanofluids at different heat and mass fluxes

Author(s):  
S Venkata Sai Sudheer ◽  
Kiran Kumar K ◽  
Karthik Balasubramanian

The flow boiling heat transfer in a vertical pipe of inner diameter 7.5 mm was investigated with pure water and Al2O3/water nanofluid as working fluids. The main heater section was made up of borosilicate glass for better visualization of flow regime. For this study, particle concentrations of 0.001%, 0.005% and 0.01% were considered. The influence of mass flux and heat flux, on flow boiling heat transfer was analysed. From the results, it is observed that boiling heat transfer coefficient is increasing with mass flux for both water and nanofluids. Use of nanofluid decreases wall superheat. The average reduction of wall superheat, as compared to water, at mass flux of 905.42 kg/s-m2 for 0.001%, 0.005% and 0.01% nanofluids is 10.8%, 21.34% and 26.79% respectively. It is also observed that heat transfer coefficient increases with particle concentration due to the changed heater surface characteristics and amendment in bubble formation mechanism. The average enhancement in heat transfer coefficient, as compared to water, for the particle concentrations of 0.001%, 0.005% and 0.01% at a mass flux of 905.42 kg/s-m2 is found to be 12.11%, 21.75% and 27.97%, respectively. Flow visualization study was also done to differentiate flow patterns of water and nanofluids. Churn flow regime was observed for water at moderate heat fluxes. However, in case of nanofluids, churn flow was not observed. The flow boiling heat transfer coefficient is observed to be high for the nanofluids compared to water. An effort has been made to explain the heat transfer mechanism, based on the existing flow boiling regime under the given conditions.

Author(s):  
K. S. Park ◽  
W. H. Choo ◽  
K. H. Bang

The flow boiling heat transfer coefficient of R-22 in small hydraulic diameter tubes has been experimentally studied. Both brass and aluminum round tubes of 1.66 mm inside diameter are used for the test section. The ranges of the major experimental parameters are 300∼600 kg/m2s of refrigerant mass flux, 10∼20 kW/m2 of the wall heat flux, 0.0∼0.9 of the inlet vapor quality. The experimental result showed that the flow boiling heat transfer coefficient in this small tubes are in the range of 2∼4 kW/m2K and it varies only by heat flux, independent of mass flux and vapor quality. It is also observed that the heat transfer coefficients in the aluminum tube are up to 50% higher than in the brass tube.


Author(s):  
Ayman Megahed ◽  
Ibrahim Hassan ◽  
Kristina Cook

The present study investigates the effect of cross-links on flow boiling heat transfer characteristics in rectangular microchannel heat sinks, using FC-72 as the working fluid. The silicon test section consists of 45 cross-linked microchannels, measuring 16 mm in length, with a hydraulic diameter of 248 μm. The parameters investigated include mass flux, heat flux, and exit quality, ranging from 99–275 kg/m2s, 7.2–88.8 kW/m2, and 0.01–0.71, respectively. Thermochromatic liquid crystals have been used in the present study as full-field surface temperature sensors to map the temperature distribution on the heat sink surface. The flow boiling heat transfer coefficient shows a different trend in the cross-linked design relative to the straight microchannel design. The flow boiling heat transfer coefficient increases with increasing exit quality at a constant mass flux, which is caused by the domination of the nucleation boiling mechanism in the cross-link region. The predictions obtained from the existing heat transfer correlations found in the literature significantly under-estimate the present heat transfer measurements, except for the Yu et al. (2002) correlation.


Author(s):  
Y. F. Xue ◽  
M. Z. Yuan ◽  
J. J. Wei

Experiments of flow boiling heat transfer coefficient of FC-72 were carried out over simulated silicon chip of 10×10×0.5 mm3 for electronic cooling. Four kinds of micro-pin-fins with the dimensions of 30×60, 30×120, 50×60, 50×120 μm2 (thickness, t × height, h) respectively, were fabricated on the chip surfaces by the dry etching technique to enhance boiling heat transfer. A smooth chip was also tested for comparison. The experiments were conducted at three different fluid velocities (0.5, 1 and 2m/s) and three different liquid subcoolings (15, 25 and 35K). All micro-pin-finned surfaces show a considerable heat transfer enhancement compared to the smooth surface. Both the forced convection and nucleate boiling heat transfer contribute to the total heat transfer performance. The contribution of each factor to the total heat transfer has been clearly presented in the flow boiling heat transfer coefficient curves. In a lower heat flux region, the heat transfer coefficient increases greatly with increasing fluid velocity, but increases slightly with increasing heat flux, indicating that the single-phase forced convection dominates the heat transfer process. With further increasing heat flux to the onset of nucleate boiling, the heat transfer coefficient increases remarkably. For a given liquid subcooling, the curves of flow boiling heat transfer coefficient at fluid velocities of 0.5 and 1 m/s almost follow one line for each surface, showing insensitivity of nucleate boiling heat transfer to fluid velocity. However, at the largest fluid velocity of 2 m/s, the slope of the flow boiling heat transfer coefficient curves for micro-pin-finned surfaces becomes smaller, indicating that the forced convection also plays an important role besides the nucleate boiling heat transfer. The curves of the flow boiling heat transfer coefficient can be used to determine the boiling incipience at different fluid velocities, which provides a basis for the suitable fluid velocity selection in designing highly efficient cooling scheme for electronic devices.


Author(s):  
Chaobin Dang ◽  
Minxia Li ◽  
Eiji Hihara

In this study, the boiling heat transfer coefficients of carbon dioxide with a PAG-type lubricating oil entrained from 0 to 5 wt% in a horizontally placed smooth tube with an inner diameter of 2 mm were experimentally investigated under the following operating conditions: mass fluxes from 170 to 320 kg/m2s, heat fluxes from 4.5 to 36 kW/m2, and a saturation temperature of 15 °C. The results show that for a low oil concentration of approximately 0.5% to 1%, no further deterioration of the heat transfer coefficient was observed at higher oil concentrations in spite of a significant decrement of the heat transfer coefficient compared to that under an oil-free condition. The heat flux still had a positive influence on the heat transfer coefficient in low quality regions. However, no obvious influence was observed in high quality regions, which implies that nucleate boiling dominates in the low quality region whereas it is suppressed in the high quality regions. Unlike the mass flux under an oil-free condition, mass flux has a significant influence on the heat transfer coefficient, with a maximum increase of 50% in the heat transfer. On the basis of our experimental measurements of the flow boiling heat transfer of carbon dioxide under wide experimental conditions, a flow boiling heat transfer model for horizontal tubes has been proposed for a mixture of CO2 and polyalkylene glycol (PAG oil) in the pre-dryout region, with consideration of the thermodynamic properties of the mixture. The surface tension and viscosity of the mixture were particularly taken into account. New factors were introduced into the correlation to reflect the suppressive effects of the mass flux and the oil on both the nucleate boiling. It is shown that the calculated results can depict the influence of the mass flux and the heat flux on both nucleate boiling and convection boiling.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Meiling Liang ◽  
Xiaohui Zhang ◽  
Rong Zhao ◽  
Xulin Wen ◽  
Shan Qing ◽  
...  

An optimal prediction model for flow boiling heat transfer of refrigerant mixture R245fa inside horizontal smooth tubes is proposed based on the GRNN neural network. The main factors strongly affecting flow boiling such as mass flux rate (G), heat flux (q), quality of vapor-liquid mixture (x), evaporation temperature (Tev), and tube inner diameter (D) are used as the inputs of the model and the flow boiling heat transfer coefficient (h) as the output. Neural network model is used to optimize the prediction of flow boiling heat transfer coefficient of R245fa in horizontal light pipe through training and learning. The prediction results are in good agreement with the experimental results. For the network model of heat transfer, the average deviation is 7.59%, the absolute average deviation is 4.89%, and the root mean square deviation is 10.51%. The optimized prediction accuracy of flow boiling heat transfer coefficient is significantly improved compared with four frequently used conventional correlations. The simulation results reveal that the modeling method based on R245fa neural network is feasible to calculate the flow boiling heat transfer coefficient, and it may provide some guidelines for the optimization design of tube evaporators for R245fa.


Sign in / Sign up

Export Citation Format

Share Document