churn flow
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 22)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol 2097 (1) ◽  
pp. 012015
Author(s):  
S Zhang ◽  
Q Q Shao ◽  
B Hu ◽  
K Wang

Abstract Churn flow frequently occurs in power plants, chemical engineering, petroleum, and other industrial applications. Due to its chaotic nature, churn flow has a significant influence on safety and management control. As one of the essential characteristics of churn flow, depth knowledge of the huge wave is crucial for a better understanding churn flow. However, relevant studies on these issues are still in shortage because it is difficult to capture its behaviours experimentally. In this study, we employed the high-speed camera to capture the evolution and properties of huge waves under churn flow conditions in a vertical pipe. The inner diameter of the pipe is 19 mm. Based on the observation, the flooding of the falling film in churn flow is demonstrated to be the slug/churn transition mechanism. Additionally, the liquid distribution in the cross-section of the tube is provided and discussed in detail. Compared with the existing experiment data, we carefully analyze the properties of huge waves, such as frequency and amplitude.


2021 ◽  
Author(s):  
Charles Okafor ◽  
Patrick Verdin ◽  
Phill Hart

Abstract Downhole Natural Gas Separation Efficiency (NGSE) is flow regime dependent, and current analytical models in certain conditions lack accuracy. Downhole NGSE was investigated through 3D Computational Fluid Dynamics (CFD) transient simulations for pumping wells in the Churn flow regime. The Volume of Fluid (VOF) multiphase model was considered along with the k – ε turbulence model for most simulations. A mesh independence study was performed, and the final model results validated against experimental data, showing an average error of less than 6 %. Numerical simulation results showed that the steady state assumption used by current mathematical models for churn flow can be inaccurate. Several key parameters affecting the NGSE were identified, and suggestions for key improvements to the widely used mathematical formulations for viscous flow provided. Sensitivity studies were conducted on fluid/geometric parameters and operating conditions, to gain a better understanding of the influence of each parameter on NGSE. These are important results as they equip the ESP engineer with additional knowledge to maximise the NGSE from design stage to pumping operations.


Author(s):  
Sudarja ◽  
Sukamta ◽  
Fauzan Saputra

Two-phase flow in the mini pipe is applied in wide fields. The most common of two-phase flow is a couple of gas and liquid. The essential properties of the liquid are density, viscosity, and surface tension. There are many variations of the flow direction, horizontal, incline, and vertical, in terms of orientation. The two-phase investigation of flow pattern and void fraction of air and low surface tension liquid in a 30° inclined small pipe has been carried out. Dry air was used as a gas phase, while the liquid was the mixture solution of distilled water and 3% (by volume) of butanol. Butanol addition aimed to decrease the surface tension, which became 42.9 millinewton/meter, instead of 71 mN/m when using distilled water. The test section was a 130 mm length, 1.6 mm inner diameter circular glass pipe. The rig used was equipped with the air compressor, pressure tank, high-speed camera, liquid flow meter, and gas flow meter. The liquid was fed to the test section by the pressurized tank, instead of directly pumped, to avoid pulsation. Ranges of gas and liquid superficial velocities were 0.025 – 66.3 m/s and 0.033 – 4,935 m/s, respectively. Flow patterns were obtained from the captured high-speed video. Meanwhile, the void fractions were acquired by image processing of the video. As a result, five distinctive flow patterns were observed: plug, slug-annular, churn, bubbly, and annular. The separated flow was absent. The change of the liquid surface tension affected the shifting of some transition boundary lines in the flow pattern map. The transition line between slug-annular and annular against churn flow was shifted to the lower side or toward lower JL when the liquid surface tension decreased. In short, the churn flow was easier to be formed when the liquid surface tension was lower.


Author(s):  
Oluwademilade Adekunle Ogunsesan ◽  
Mamdud Hossain ◽  
Mohamad Ghazi Droubi

This study investigates the effects of elbow on the transition and development of multiphase flow using computational fluid dynamics modelling techniques. The Eulerian - Multifluid VOF model coupled with an Interfacial Area Transport Equation has been employed to simulate air-water two-phase flow in a pipe with two standard 90 degree elbows mounted in series. Turbulence effects were accounted for by the RNG k-ε model. The effects of separation distance on two-phase flow development have been studied for initial slug and churn flow regimes. Computational fluid dynamics simulation results of phase distribution and time series of void fraction fluctuations were obtained and they showed good agreement with available experimental data. The results show that for initial slug flow regime, there is no flow regime transformation upstream and downstream of the two elbows. While at initial churn flow regime, flow regime transformation occurs at different sections of the flow domain before and after the two elbows. It was noticed that irrespective of the flow regime, the amplitudes and frequencies of void fraction fluctuation become smaller as the fluid flows along the pipe. Changes in the separation distance between the two elbows have larger effects on the flow at churn flow regime.


2021 ◽  
Vol 39 (2) ◽  
pp. 621-628
Author(s):  
Veyan A. Musa ◽  
Raid A. Mahmood ◽  
Shwan M. Noori Khalifa ◽  
Omar M. Ali ◽  
Lokman A. Abdulkareem

The current investigation aimed to identify pressure gradients and to study the fully developed flow patterns of oil-gas as a blend in a pipe of internal diameter 50 mm and 6 m length with different orientations of 0, 30, and 45-degree. The study was performed at constant values of liquid superficial velocities 0.052, 0.157, 0.262, 0.314, 0.419, and 0.524 m/s, and inlet superficial velocities of gas were ranged from 0.05 to 4.7 m/s at atmospheric pressure. Two pressure transducers located up and downstream were used to measure pressure drops inside the tested pipe. Flow patterns were derived by using the correlation between pressure gradients and time series, the Probability Density Function of differential pressures, pressure gradients with gas superficial velocities, and total pressure losses with mean void fractions. The flow patterns of oil-gas were observed as a uniform stratified flow in the pipe on a 0-degree orientation at various superficial velocities. Stratified, wavy, and slug flow patterns were observed at 30-degree orientation, whereas, bubbly, slug, and churn flow patterns were observed in the pipe of 45-degree orientation. The experiment also showed that pressure drop gradients decreased with increased void fractions, gas superficial velocities, and degree rotations of the flow lines. Finally, the validation of using pressure transducers as a technique for estimating the flow patterns of two-phase flow showed acceptable results with some kind of patterns.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2440
Author(s):  
Youngwoo Kim ◽  
Dae Yeon Kim ◽  
Kyung Chun Kim

A flow visualization study was carried out for flow boiling in a rectangular channel filled with and without metallic random porous media. Four main flow patterns are observed as intermittent slug-churn flow, churn-annular flow, annular-mist flow, and mist flow regimes. These flow patterns are clearly classified based on the high-speed images of the channel flow. The results of the flow pattern map according to the mass flow rate were presented using saturation temperatures and the materials of porous media as variables. As the saturation temperatures increased, the annular-mist flow regime occupied a larger area than the lower saturation temperatures condition. Therefore, the churn flow regime is narrower, and the slug flow more quickly turns to annular flow with the increasing vapor quality. The pattern map is not significantly affected by the materials of porous media.


Wear ◽  
2021 ◽  
pp. 203654
Author(s):  
Ronald E. Vieira ◽  
Siamack A. Shirazi
Keyword(s):  

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Zilong Liu ◽  
Yubin Su ◽  
Ming Lu ◽  
Zilong Zheng ◽  
Ruiquan Liao

Churn flow commonly exists in the pipe of heavy oil, and the characteristics of churn flow should be widely understood. In this paper, we carried out air and viscous oil two-phase flow experiments, and the diameter of the test section is 60 mm. The viscosity range of the oil was 100~480 mPa·s. Based on the measured liquid holdup and pressure drop data of churn flow, it can be concluded that, due to the existence of liquid film backflow, positive and negative frictional pressure drop can be found and the change of frictional pressure drop with the superficial gas velocity is related to superficial liquid velocity. With the increase of viscosity, the change rate of frictional pressure drop increases with the increase of the superficial gas velocity. Combining our previous work and the Taitel model, we proposed a new pressure drop model for viscous oil-air two-phase churn flow in vertical pipes. By comparing the predicted values of existing models with the measured pressure drop data, the proposed model has better performance in predicting the pressure drop.


Author(s):  
He Wen ◽  
Zhao Chenru ◽  
Bo Hanliang

Abstract Vertical upward two-phase flows in annulus are of great importance in many industrial fields due to the closely relationship between the flow patterns and the heat transfer characteristics. Common flow patterns in annulus are bubbly (B), slug (S), churn (C) and annular (A) flow, most of which are quite similar to those in tubes. However, due to the elliptic nose and asymmetric shape of the Taylor bubble in annulus, the slug to churn flow transition could be influenced by the channel geometry which was usually ignored in most of the previous researches. The flow pattern transition criteria for tubes are thus not applicable for annulus, especially for slug to churn flow transition, which should be separately studied. Therefore, in this paper, the basic characteristics of the flow pattern in annulus and their transition mechanism are analyzed. In addition, a set of semi-empirical transition criteria with higher accuracy are assessed and selected for annulus based on theoretical analysis and comparisons with experimental data.


Author(s):  
Xiaobo Zeng ◽  
Changqi Yan ◽  
Guangming Fan ◽  
Jie Cheng ◽  
Junxiu Xu ◽  
...  

Abstract Gas-liquid separation is widely used in many fields, such as nuclear energy and petroleum resources. And the gas-liquid mixture separated gradually shows the characteristic of wide range of gas void fraction and variable flow patterns. However, the current separators only suit for narrow range of gas void fraction or single flow patterns. In this research, two different new type separators using centrifugal technology were designed and an experimental system was constructed to test the two separators using dry air and water under different flow patterns, including bubble, slug and churn flow. One was called inline separator consisting of three swirls and another was called double-layer cylinder separator composed of a central tube, a swirl and an outer tube. The results show that the separation performance of the inline separator was sensitive to flow patterns and the two-layer cylinder separator keeps high efficiency in different flow patterns. In bubble flow and slug flow patterns, the two separators kept high efficiency, while the oscillation of the gas core in the inline separator aggravated under slug flow condition. When increasing the gas void fraction, the turbulence of the churn flow led to the diameter of the gas core change drastically and reduce separation efficiency significantly.


Sign in / Sign up

Export Citation Format

Share Document