Dynamic compression and tensile responses of an epoxy matrix composites at high strain rate

Author(s):  
HX Hu ◽  
LM Meng ◽  
ZW Liu ◽  
XY Chen ◽  
HL Qin ◽  
...  

To study the dynamic compression and tensile mechanical behaviors of a bicomponent epoxy resin matrix composites, which were filled with a semi-crystalline thermoplastic Polyether-ether ketone (PAEK-C) resin, at high strain rate, the dynamic compression and tensile experiments were carried out on a modified split Hopkinson pressure bar (SHPB) and high speed material apparatus, respectively. Stress-strain curves of the epoxy resin matrix composites were obtained and analyzed. Damage mechanism under high strain rate was characterized through the scanning electron microscope (SEM) observation. Results of the dynamic compression tests indicated that, although the effects of strain rate remarkably influenced the variations in stress, the behaviors of the epoxy resin matrix played a more significant role than strain rate in the determination of the high strain rate. It was reflected through increased ductility of the samples and reduced slope of the stress-strain curves. The dynamic impact tensile tests results show that, PAEK-C fillers exhibited dramatic toughening effect. The increase of the volume fraction of PAEK-C rich phase inevitably forces the crack to overcome more tearing deformation of PAEK-C rich phase. At the same time, the enhancement of plastic capacity may also induce a larger range of cooperative deformation at the crack tip.

2015 ◽  
Vol 3 (2) ◽  
pp. 80-85
Author(s):  
Sunita Mishra ◽  
Tanusree Chakraborty ◽  
Dipanjan Basu

2018 ◽  
Vol 183 ◽  
pp. 02012
Author(s):  
Miloslav Popovič ◽  
Jaroslav Buchar ◽  
Martina Drdlová

The results of dynamic compression and tensile-splitting tests of concrete reinforced by randomly distributed short non – metallic fibres are presented. A Split Hopkinson Pressure Bar combined with a high-speed photographic system, was used to conduct dynamic Brazilian tests. Quasi static test show that the reinforcement of concrete by the non-metallic fibres leads to the improvement of mechanical properties at quasi static loading. This phenomenon was not observed at the high strain rate loading .Some explanation of this result is briefly outlined.


Sign in / Sign up

Export Citation Format

Share Document