rich phase
Recently Published Documents


TOTAL DOCUMENTS

611
(FIVE YEARS 157)

H-INDEX

32
(FIVE YEARS 7)

2022 ◽  
Vol 12 (2) ◽  
pp. 707
Author(s):  
Ana F. C. S. Rufino ◽  
Mafalda R. Almeida ◽  
Mukesh Sharma ◽  
João A. P. Coutinho ◽  
Mara G. Freire

In this work, the extraction and separation of bovine serum albumin (BSA) from its original matrix, i.e., bovine serum, was performed using a novel ionic-liquid-based aqueous biphasic system (IL-based ABS). To this end, imidazolium-, phosphonium-, and ammonium-based ILs, combined with the anions’ acetate, arginate and derived from Good Buffers, were synthesized, characterized, and applied in the development of ABS with K2HPO4/KH2PO4 buffer aqueous solutions at pH 7. Initial studies with commercial BSA revealed a preferential migration of the protein to the IL-rich phase, with extraction efficiencies of 100% obtained in a single-step. BSA recovery yields ranging between 64.0% and 84.9% were achieved, with the system comprising the IL tetrabutylammonium acetate leading to the maximum recovery yield. With this IL, BSA was directly extracted and separated from bovine serum using the respective ABS. Different serum dilutions were further investigated to improve the separation performance. Under the best identified conditions, BSA can be extracted from bovine serum with a recovery yield of 85.6% and a purity of 61.2%. Moreover, it is shown that the BSA secondary structure is maintained in the extraction process, i.e., after being extracted to the IL-rich phase. Overall, the new ABS herein proposed may be used as an alternative platform for the purification of BSA from serum samples and can be applied to other added-value proteins.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 411
Author(s):  
Xiao Shen ◽  
Shuiqing Liu ◽  
Xin Wang ◽  
Chunxiang Cui ◽  
Pan Gong ◽  
...  

The mechanical properties of iron-rich Al–Si alloy is limited by the existence of plenty of the iron-rich phase (β-Al5FeSi), whose unfavorable morphology not only splits the matrix but also causes both stress concentration and interface mismatch with the Al matrix. The effect of the cooling rate on the tensile properties of Fe-rich Al–Si alloy was studied by the melt spinning method at different rotating speeds. At the traditional casting cooling rate of ~10 K/s, the size of the needle-like β-Al5FeSi phase is about 80 μm. In contrast, the size of the β-Al5FeSi phase is reduced to 500 nm and the morphology changes to a granular morphology with the high cooling rate of ~104 K/s. With the increase of the cooling rate, the morphology of the β-Al5FeSi phase is optimized, meanwhile the tensile properties of Fe-rich Al–Si alloy are greatly improved. The improved tensile properties of the Fe-rich Al-Si alloy is attributed to the combination of Fe-rich reinforced particles and the granular silicon phase provided by the high cooling rate of the melt spinning method.


2021 ◽  
Vol 9 ◽  
Author(s):  
Gaogao Dong ◽  
Dongli Duan ◽  
Yongxiang Xia

In real-world scenarios, networks do not exist in isolation but coupled together in different ways, including dependent, multi-support, and inter-connected patterns. And, when a coupled network suffers from structural instability or dynamic perturbations, the system with different coupling patterns shows rich phase transition behaviors. In this review, we present coupled network models with different coupling patterns developed from real scenarios in recent years for studying the system robustness. For the coupled networks with different coupling patterns, based on the network percolation theory, this paper mainly describes the influence of coupling patterns on network robustness. Moreover, for different coupling patterns, we here show readers the research background, research context, and the latest research results and applications. Furthermore, different approaches to improve system robustness with various coupling patterns and future possible research directions for coupled networks are explained and considered.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1994
Author(s):  
Isaac Toda-Caraballo ◽  
Jose Antonio Jiménez ◽  
Srdjan Milenkovic ◽  
Jorge Jimenez-Aguirre ◽  
David San-Martín

New High Entropy Alloys based on the CoCrFe2Ni2 system have been developed by adding up to 10 at. % of Cu, Mo, and Cu + Mo in different amounts. These alloys showed a single face-centred cubic (FCC) structure after homogenization at 1200 °C. In order to evaluate their thermal stability, aging heat treatments at 500, 700, and 900 °C for 8 h were applied to study the possible precipitation phenomena. In the alloys where only Cu or Mo was added, we found the precipitation of an FCC Cu-rich phase or the µ phase rich in Mo, respectively, in agreement with some of the results previously shown in the literature. Nevertheless, we have observed that when both elements are present, Cu precipitation does not occur, and the formation of the Mo-rich phase is inhibited (or delayed). This is a surprising result as Cu and Mo have a positive enthalpy of mixing, being immiscible in a binary system, while added together they improve the stability of this system and maintain a single FCC crystal structure from medium to high temperatures


2021 ◽  
Vol 11 (12) ◽  
pp. 2033-2038
Author(s):  
Kaiju Shi ◽  
Chengxin Wang ◽  
Rui Li ◽  
Shangda Qu ◽  
Zonghao Wu ◽  
...  

Two multiple quantum well (MQW) InGaN/GaN structures emitting green light, without (A) and with (B) an indium (In) volatilization suppression technique (IVST) during growth of the active region, were fabricated. The dependencies of the photoluminescence (PL) spectra upon temperature at different levels of excitation power were investigated. The results indicate that an IVST can increase the In content while suppressing the phase separation caused by volatilization of that In incorporated in the well layers. Also, compared with Structure B with IVST, which contains one phase structure, Structure A without IVST, which contains two separate phases (i.e., an In-rich phase and an In-poor phase), exhibits higher internal quantum efficiency (IQE) at low excitation power and lower IQE at high excitation power. The former is mainly attributed to the stronger In-rich phase-related localization effect of Structure A, because the In-rich phase-related emission dominates the PL spectra of Structure A at a low excitation power; the latter is mainly due to the In-poor phase-related weaker localization effect of Structure A, because the In-poor phase-related emission dominates the PL spectra of Structure A at high excitation power because localized states in this In-rich phase are saturated.


Author(s):  
Chuyi Duan ◽  
Marius Reiberg ◽  
Peter Kutlesa ◽  
Xiaohu Li ◽  
Reinhard Pippan ◽  
...  

AbstractAn equiatomic MoNbTaTiVZr refractory high-entropy alloy (HEA) produced by arc melting was processed by high-pressure torsion (HPT) at room temperature. Thermodynamic calculations and experimental results indicated a dual-phase microstructure composed of about 85% BCC Zr-depleted and 15% BCC Zr-rich phase in the as-cast condition. HPT causes grain refinement and an increase in dislocation density without the formation of new phases. After four revolutions, the Zr-depleted phase was hardened to $$\sim $$ ∼ 540 HV, while the Zr-rich phase exhibited softening with a decrease in hardness to $$\sim $$ ∼ 480 HV. The occurrence of a vortex-like microstructure and the analysis of elemental concentrations indicated a shear-induced mechanical homogenization, which was supposed to be the cause of the observed softening.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7141
Author(s):  
Xi Huang ◽  
Lianbo Wang ◽  
Zemin Wang ◽  
Zhanyong Wang ◽  
Qingdong Liu

In this paper, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray stress meter (XRSA), atom probe tomography (APT), hardness, and tensile tests were used to study the effect of tempering temperature on the microstructure and properties of Fe-9Ni-2Cu steel. The results show that after the quenched samples were tempered at 460 °C for 2 h, the hardness values increased from 373 to 397 HV, and elongation also increased from 13% to 16%. With the tempering temperature increasing from 460 to 660 °C, the hardness firstly decreases from 397 to 353 HV and then increases to 377 HV, while the elongation increases to 17% and then decreases to 11%. The variation of the mechanical properties greatly depends on the evolution of the Cu-rich phase and carbides. The precipitation strengthening of the Cu-rich phase and carbides leads to the increase of hardness, but when the precipitate is coarsened, the precipitation strengthening weakens, and then, the hardness increases. When the tempering temperature is 560 °C, a large amount of stable reverse transformation austenite was formed with a content of 7.1%, while the tensile strength reached the lowest value of 1022 MPa and the elongation reached the maximum value of 17%.


Sign in / Sign up

Export Citation Format

Share Document