Design of a non-singular fast terminal sliding mode control for second-order nonlinear systems with compound disturbance

Author(s):  
Mohammad Reza Salehi Kolahi ◽  
Mohammad Reza Gharib ◽  
Ali Heydari

This paper investigates a new disturbance observer based non-singular fast terminal sliding mode control technique for the path tracking and stabilization of non-linear second-order systems with compound disturbance. The compound disturbance is comprised of both parametric and non-parametric uncertainties. While warranting fast convergence rate and robustness, it also dominates the singularity and complex-value number issues associated with conventional terminal sliding mode control. Furthermore, due to the estimation properties of the observer, knowledge about the bounds of the uncertainties is not required. The simulation results of two case studies, the velocity and path tracking of an autonomous underwater vehicle and the stabilization of a chaotic Φ6-Duffing oscillator, validate the efficacy of the proposed method.

2016 ◽  
Vol 23 (18) ◽  
pp. 2912-2925 ◽  
Author(s):  
Saleh Mobayen ◽  
Dumitru Baleanu ◽  
Fairouz Tchier

In this paper, an linear matrix inequalities (LMI)-based second-order fast terminal sliding mode control technique is investigated for the tracking problem of a class of non-linear uncertain systems with matched and mismatched uncertainties. Using the offered approach, a robust chattering-free control scheme is presented to prove the presence of the switching around the sliding surface in the finite time. Based on the Lyapunov stability theorem, the LMI conditions are presented to make the state errors into predictable bounds and the parameters of the controller are obtained in the form of LMI. The control structure is independent of the order of the model. Then, the proposed method is fairly simple and there is no difficulty in the use of this scheme. Simulations on the well-known Genesio's chaotic system and Chua's circuit system are employed to emphasize the success of the suggested scheme. The simulation results on the Genesio's system demonstrate that the offered technique leads to the superior improvement on the control effort and tracking performance.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Huihui Pan ◽  
Guangming Zhang

This paper presents a novel nonsingular fast terminal sliding mode control scheme for a class of second-order uncertain nonlinear systems. First, a novel nonsingular fast terminal sliding mode manifold (NNFTSM) with adaptive coefficients is put forward, and a novel double power reaching law (NDP) with dynamic exponential power terms is presented. Afterwards, a novel nonsingular fast terminal sliding mode (NNFTSMNDP) controller is designed by employing NNFTSM and NDP, which can improve the convergence rate and the robustness of the system. Due to the existence of external disturbances and parameter uncertainties, the system states under controller NNFTSMNDP cannot converge to the equilibrium but only to the neighborhood of the equilibrium in finite time. Considering the unsatisfying performance of controller NNFTSMNDP, an adaptive disturbance observer (ADO) is employed to estimate the lumped disturbance that is compensated in the controller in real-time. A novel composite controller is presented by combining the NNFTSMNDP method with the ADO technique. The finite-time stability of the closed-loop system under the proposed control method is proven by virtue of the Lyapunov stability theory. Both simulation results and theoretical analysis illustrate that the proposed method shows excellent control performance in the existence of disturbances and uncertainties.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yaobin Song ◽  
Hui Li ◽  
Xiaoling Shi

To facilitate the stabilization of nonlinear underactuated robotic systems under perturbation, a novel nonsingular fast terminal sliding mode control method is proposed. Based on the system transformation into an integrator chain, the combination of twisting-like algorithm and a nonsingular fast terminal sliding mode control technique is employed to achieve the stabilization of the studied systems, which can drive the robot states (joint positions and velocities) to the desired region and then maintain the system at the equilibrium point in finite time. The robustness of the proposed method is validated by the Lyapunov direct method. Finally, numerical simulation results further demonstrate that the proposed method has better performance on the convergent speed of the system state (robot joint positions and velocities) than state-of-the-art methods, especially for the underactuated joints.


Sign in / Sign up

Export Citation Format

Share Document