Numerical analysis on tractive performance of off-road tire on gravel road using a calibrated finite element method–discrete element method model and experimental validation

Author(s):  
Weipan Xu ◽  
Haiyang Zeng ◽  
Peng Yang ◽  
Mengyan Zang

The interaction between off-road tires and granular terrain has a great influence on the tractive performance of off-road vehicles. However, the finite element method or the discrete element method cannot effectively study the interaction between off-road tires and granular terrain. The three-dimensional combined finite element and discrete element method is applied to handle this problem. In this study, a calibrated finite element method–discrete element method model is established, in which the finite element model of off-road tire is validated by stiffness tests, while the discrete element model of gravel particles is validated by triaxial compression tests. The calibrated finite element method–discrete element method model can describe the structural mechanics of the off-road tire and the macroscopic mechanical properties of the gravel road. Tractive performance simulations of the off-road tire on gravel road under different slip conditions are performed with the commercial software LS-DYNA. The simulation results are basically corresponded with the soil-bin test results in terms of granular terrain deformation and tractive performance parameters versus the slip rates. Finally, the effects of tread pattern, wheel load, and tire inflation pressure on tractive performance of off-road tire on granular terrain are investigated. It indicates that the calibrated finite element method–discrete element method can be an effective tool for studying the tire–granular terrain interaction and predicting the tractive performance of off-road tire on granular terrain.

Author(s):  
Emmanuel Frangin ◽  
Philippe Marin ◽  
Laurent Daudeville

The paper deals with combined finite/discrete element method to study structures under severe dynamic loading, like impact. The discrete element method take naturally into account the non linear phenomena, it is used in the vicinity of the impacted zone. The finite element method is used to reduce the time of computation in order to carry out large structure analyses. The aim of the paper is to discuss the way to reduce non physical wave reflections; it presents an application on a rock impact on a concrete slab.


2009 ◽  
Vol 28 (3) ◽  
pp. 197-204 ◽  
Author(s):  
Zhaowang Xia ◽  
Xiandong Liu ◽  
Yingchun Shan ◽  
Xinghu Li

One advantage of the particle damper is that its property is independent of the surrounding temperature. This allows it to be used in harsh environments where traditional dampers fail. But current design of this damper mainly depends on experimental results because of a lack of theoretical research. In this paper, an investigation into particle dampers is performed analytically and experimentally. A coupling simulation algorithm based on the discrete element method and finite element method is presented. Comparison between the analytical and experimental results shows that simulation of the response of a cantilever plate with a particle damper is accurate. It is shown that the response of the cantilever plate depends on the mass-fill ratio and particle density of the particle damper.


Author(s):  
Anders H. Andersen ◽  
Frederik F. Foldager ◽  
Kasper Ringgaard ◽  
Ole Balling

Production of high accuracy components often involves machining processes. If the machining processes are pushed to increase productivity, it can become challenging to comply with strict tolerances and surface finish requirements. Both the finite element method and the discrete element method have been used for off-line deflection compensation and stability analysis. This contribution investigates the capabilities of a simplified discrete element model in the use for offline simulation of the dynamic behavior of a workpiece during machining. A cantilever beam is modelled and the natural frequencies are monitored as material is removed. Results are compared with theoretical frequencies and with finite element analysis. The model shows a good correspondence in the frequency behavior as material is removed compared with finite element results, though the simple discrete element model under-predicts the stiffness of the beam with approximate 5% for the first two modes.


2021 ◽  
pp. 014459872110135
Author(s):  
Zhen Tian ◽  
Shuangxi Jing ◽  
Lijuan Zhao ◽  
Wei Liu ◽  
Shan Gao

The drum is the working mechanism of the coal shearer, and the coal loading performance of the drum is very important for the efficient and safe production of coal mine. In order to study the coal loading performance of the shearer drum, a discrete element model of coupling the drum and coal wall was established by combining the results of the coal property determination and the discrete element method. The movement of coal particles and the mass distribution in different areas were obtained, and the coal particle velocity and coal loading rate were analyzed under the conditions of different helix angles, rotation speeds, traction speeds and cutting depths. The results show that with the increase of helix angle, the coal loading first increases and then decreases; with the increase of cutting depth and traction speed, the coal loading rate decreases; the increase of rotation speed can improve the coal loading performance of drum to a certain extent. The research results show that the discrete element numerical simulation can accurately reflect the coal loading process of the shearer drum, which provides a more convenient, fast and low-cost method for the structural design of shearer drum and the improvement of coal loading performance.


Author(s):  
Márton Tamás Birosz ◽  
Mátyás Andó ◽  
Sudhanraj Jeganmohan

AbstractDesigning components is a complex task, which depends on the component function, the raw material, and the production technology. In the case of rotating parts with higher RPM, the creep and orientation are essential material properties. The PLA components made with the material extrusion process are more resistant than VeroWhite (material jetting) and behave similarly to weakly cross-linked elastomers. Also, based on the tensile tests, Young’s modulus shows minimal anisotropy. Multilinear isotropic hardening and modified time hardening models are used to create the finite element model. Based on the measurements, the finite element method simulation was identified. The deformation in the compressor wheel during rotation became definable. It was concluded that the strain of the compressor wheel manufactured with material extrusion technology is not significant.


2014 ◽  
Vol 577 ◽  
pp. 108-111 ◽  
Author(s):  
Ying Qiu ◽  
Mei Lin Gu ◽  
Feng Guang Zhang ◽  
Zhi Wei

The discrete element method (DEM) is applied to glass micromachining in this study. By three standard tests the discrete element model is established to match the main mechanical properties of glass. Then, indentating, cutting, micro milling process are simulated. Results show that the vertical damage depth is prevented from reaching the final machined surface in cutting process. Tool rake angle is the most remarkable factor influencing on the chip deformation and cutting force. The final machined surface is determined by the minimum cutting thickness per edge. Different cutting thickness, cutter shape and spindle speed largely effect on the mechanism of glass.


2018 ◽  
Vol 30 (3) ◽  
pp. 416-437 ◽  
Author(s):  
Liming Zhou ◽  
Ming Li ◽  
Bingkun Chen ◽  
Feng Li ◽  
Xiaolin Li

In this article, an inhomogeneous cell-based smoothed finite element method (ICS-FEM) was proposed to overcome the over-stiffness of finite element method in calculating transient responses of functionally graded magneto-electro-elastic structures. The ICS-FEM equations were derived by introducing gradient smoothing technique into the standard finite element model; a close-to-exact system stiffness was also obtained. In addition, ICS-FEM could be carried out with user-defined sub-routines in the business software now available conveniently. In ICS-FEM, the parameters at Gaussian integration point were adopted directly in the creation of shape functions; the computation process is simplified, for the mapping procedure in standard finite element method is not required; this also gives permission to utilize poor quality elements and few mesh distortions during large deformation. Combining with the improved Newmark scheme, several numerical examples were used to prove the accuracy, convergence, and efficiency of ICS-FEM. Results showed that ICS-FEM could provide solutions with higher accuracy and reliability than finite element method in analyzing models with Rayleigh damping. Such method is also applied to complex structures such as typical micro-electro-mechanical system–based functionally graded magneto-electro-elastic energy harvester. Hence, ICS-FEM can be a powerful tool for transient problems of functionally graded magneto-electro-elastic models with damping which is of great value in designing intelligence structures.


Sign in / Sign up

Export Citation Format

Share Document