Research of the suction flow control on wings at low Reynolds numbers

Author(s):  
Dongli Ma ◽  
Guanxiong Li ◽  
Muqing Yang ◽  
Shaoqi Wang

Laminar separation and transition have significant effects on aerodynamic characteristics of the wing under the condition of low Reynolds numbers. Using the flow control methods to delay and eliminate laminar separation has great significance. This study uses the method combined with water tunnel test and numerical calculation to research the effects of suction flow control on the flow state and aerodynamic force of the wing at low Reynolds numbers. The effects of suction flow rate and suction location on laminar separation, transition and aerodynamic performance of the wing are further researched. The results of the research show that, the suction can control laminar separation and transition effectively, when the suction holes are in the interior of the separation bubble, and close to the separation point, the suction has the best control effect. When the Reynolds number is Re = 3.0 × 105, the suction flow control can make the lift-to-drag ratio of the wing increase by 8.62%, and the aerodynamic characteristics of the wing are improved effectively.

Author(s):  
Jenny Baumann ◽  
Ulrich Rist ◽  
Martin Rose ◽  
Tobias Ries ◽  
Stephan Staudacher

The reduction of blade counts in the LP turbine is one possibility to cut down weight and therewith costs. At low Reynolds numbers the suction side laminar boundary layer of high lift LP turbine blades tends to separate and hence cause losses in turbine performance. To limit these losses, the control of laminar separation bubbles has been the subject of many studies in recent years. A project is underway at the University of Stuttgart that aims to suppress laminar separation at low Reynolds numbers (60,000) by means of actuated transition. In an experiment a separating flow is influenced by disturbances, small in amplitude and of a certain frequency, which are introduced upstream of the separation point. Small existing disturbances are therewith amplified, leading to earlier transition and a more stable boundary layer. The separation bubble thus gets smaller without need of a high air mass flow as for steady blowing or pulsed vortex generating jets. Frequency and amplitude are the parameters of actuation. The non-dimensional actuation frequency is varied from 0.2 to 0.5, whereas the normalized amplitude is altered between 5, 10 and 25% of the free stream velocity. Experimental investigations are made by means of PIV and hot wire measurements. Disturbed flow fields will be compared to an undisturbed one. The effectiveness of the presented boundary layer control will be compared to those of conventional ones. Phase-logged data will give an impression of the physical processes in the actuated flow.


Author(s):  
Ishfaq Fayaz ◽  
Syeeda Needa Fathima ◽  
Y.D. Dwivedi

The computational investigation of aerodynamic characteristics and flow fields of a smooth owl-like airfoil without serrations and velvet structures.The bioinspired airfoil design is planned to serve as the main-wing for low-reynolds number aircrafts such as (MAV)micro air vechiles.The dependency of reynolds number on aerodynamics could be obtained at low reynolds numbers.The result of this experiment shows the owl-like airfoil is having high lift performance at very low speeds and in various wind conditions.One of the unique feature of owl airfoil is a separation bubble on the pressure side at low angle of attack.The separation bubble changes location from the pressure side to suction side as the AOA (angle of attack) increases. The reynolds number dependancy on the lift curve is insignificant,although there’s difference in drag curve at high angle of attacks.Eventually, we get the geometric features of the owl like airfoil to increase aerodynamic performance at low reynolds numbers.


Sign in / Sign up

Export Citation Format

Share Document