Aerodynamic model of propeller–wing interaction for distributed propeller aircraft concept

Author(s):  
Baizura Bohari ◽  
Quentin Borlon ◽  
Murat Bronz ◽  
Emmanuel Benard

The present investigation addresses two key issues in aerodynamic performance of a propeller–wing configuration, namely linear and nonlinear predictions with low-order numerical models. The developed aerodynamic model is targeted to be used in the preliminary aircraft design loop. First, the combination of selected propeller model, i.e. blade element theory with the wing model, i.e. lifting line theory and vortex lattice method is considered for linear aerodynamic model. Second, for the nonlinear prediction, a modified vortex lattice method is paired with the two-dimensional viscous effect of the airfoils to simplify and reduce the computational time. These models are implemented and validated with existing experimental data to predict the differences in lift and drag distribution. Overall, the predicted results show agreement with low percentage of error compared with the experimental data for various thrust coefficients and produced induced drag distribution that behaves as expected.

2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Sen Mao ◽  
Changchuan Xie ◽  
Lan Yang ◽  
Chao Yang

A morphing trailing-edge (TE) wing is an important morphing mode in aircraft design. In order to explore the static aeroelastic characteristics of a morphing TE wing, an efficient and feasible method for static aeroelastic analysis has been developed in this paper. A geometrically exact vortex lattice method (VLM) is applied to calculate the aerodynamic forces. Firstly, a typical model of a morphing TE wing is chosen and built which has an active morphing trailing edge driven by a piezoelectric patch. Then, the paper carries out the static aeroelastic analysis of the morphing TE wing and corresponding simulations were carried out. Finally, the analysis results are compared with those of a traditional wing with a rigid trailing edge using the traditional linearized VLM. The results indicate that the geometrically exact VLM can better describe the aerodynamic nonlinearity of a morphing TE wing in consideration of geometrical deformation in aeroelastic analysis. Moreover, out of consideration of the angle of attack, the deflection angle of the trailing edge, among others, the wing system does not show divergence but bifurcation. Consequently, the aeroelastic analysis method proposed in this paper is more applicable to the analysis and design of a morphing TE wing.


Author(s):  
Ye Tian ◽  
Spyros A. Kinnas

A hybrid method which couples a Vortex-Lattice Method (VLM) solver and a Reynolds-Averaged Navier-Stokes (RANS) solver is applied to simulate the interaction between a Dynamic Positioning (DP) thruster and an FPSO hull. The hybrid method could significantly reduce the number of cells to fifth of that in a full blown RANS simulation and thus greatly enhance the computational efficiency. The numerical results are first validated with available experimental data, and then used to assess the significance of the thruster/hull interaction in DP systems.


Author(s):  
Ye Tian ◽  
Spyros A. Kinnas

A hybrid method which couples a vortex-lattice method (VLM) solver and a Reynolds-Averaged Navier–Stokes (RANS) solver is applied to simulate the interaction between a dynamic positioning (DP) thruster and a floating production storage and offloading (FPSO) hull. The hybrid method can significantly reduce the number of cells to fifth of that in a full-blown RANS simulation and thus greatly enhance the computational efficiency. The numerical results are first validated with available experimental data, and then used to assess the significance of the thruster/hull interaction in DP systems.


2020 ◽  
Vol 12 (1) ◽  
pp. 91-103
Author(s):  
Maxime Alex Junior KUITCHE ◽  
Ruxandra Mihaela BOTEZ ◽  
Arthur GUILLEMIN ◽  
David COMMUNIER

This paper describes a methodology to predict the aerodynamic behaviour of an Unmanned Aerial System. Aircraft design and flight dynamics modelling are mainly concerned with aerodynamics, and thus its estimation requires a high level of accuracy. The work presented here shows a new non-linear formulation of the classical Vortex Lattice Method and a comparison between this methodology and an experimental analysis. The new non-linear Vortex Lattice Method was performed by calculating the viscous forces from the strip theory, and the forces generated by the vortex rings from the vortex lifting law. The experimental analysis was performed on a reduced scale wing in a low speed wind tunnel. The obtained results were also compared to those obtained from semi-empirical methods programmed using DATCOM and our Fderivatives new in-house codes. The results have indicated the accuracy of the new formulation and showed that an aerodynamic model obtained with the aerodynamic coefficients predicted with this method could be useful for flight dynamics estimation.


AIAA Journal ◽  
1997 ◽  
Vol 35 ◽  
pp. 1230-1233
Author(s):  
Paulo A. O. Soviero ◽  
Hugo B. Resende

1988 ◽  
Vol 25 (2) ◽  
pp. 97-98 ◽  
Author(s):  
B. Rajeswari ◽  
H. N. V. Dutt

Sign in / Sign up

Export Citation Format

Share Document