Recent advances in active fault tolerant flight control systems

Author(s):  
Muhammad Sohail Khan Raja ◽  
Qasim Ali

The Flight Control System (FCS) is considered as the brain of an aerial vehicle. It is a mechanism through which pilot’s commands are transferred to the actuators of the aircraft control surfaces. In order to ensure safety and increase reliability of aerial vehicles, development of fault tolerant FCSs has been the focus of research community for past few decades. Fault tolerant ability enables an aircraft to maintain satisfactory performance even in the state of a fault. Fault Tolerant Control Systems (FTCS) are categorized as passive and active control systems. Passive FTCS are designed to mitigate the effects of certain known faults. These faults can be related to sensor failure, actuator failure, or system component failure. On the other hand, active FTCS contain a controller reconfiguration mechanism, whereby, they can adjust the controller input online to mitigate the effects of the faults. In this way, they can accommodate complicated and versatile faults as compared to their passive counterparts. This paper presents a review of significant research during last decade in active fault tolerant control with applications to FCSs. A review of state-of-the-art works in this domain has also been presented. Upon review, these state-of-the-art research interests have been categorized into respective categories. Furthermore, research works have been cataloged based on their technology readiness levels. Based on these reviews, future research directions have also been highlighted.

Author(s):  
Huai-Ning Wu ◽  
Ming-Zhen Bai

This paper studies the problem of H∞ fuzzy tracking control design for nonlinear active fault tolerant control systems based on the Takagi and Sugeno fuzzy model. Two random processes with Markovian transition characteristics are introduced to model the system component fault process and the fault detection and isolation decision process used to reconfigure the control law, respectively. The random behavior of the FDI process is conditioned on the fault process state. The parallel distributed compensation scheme is employed for the control design. As a result, a closed-loop fuzzy system with two Markovian jump parameters is obtained. Based on a stochastic Lyapunov function, a sufficient condition for stochastic stability of the closed-loop fuzzy system with a guaranteed H∞ model reference tracking performance is first derived. A linear matrix inequality approach to the control design is then developed to reduce the effect of the external disturbance and reference input on tracking error as small as possible. Finally, a simulation example is presented to illustrate the effectiveness of the proposed design method.


Complexity ◽  
2016 ◽  
Vol 21 (S1) ◽  
pp. 318-329 ◽  
Author(s):  
Mona Faraji-Niri ◽  
Mohammad Reza Jahed-Motlagh ◽  
Mojtaba Barkhordari-Yazdi

Sign in / Sign up

Export Citation Format

Share Document