scholarly journals Results of the International Wet Steam Modeling Project

Author(s):  
Jörg Starzmann ◽  
Fiona R Hughes ◽  
Sebastian Schuster ◽  
Alexander J White ◽  
Jan Halama ◽  
...  

The purpose of the “International Wet Steam Modeling Project” is to review the ability of computational methods to predict condensing steam flows. The results of numerous wet-steam methods are compared with each other and with experimental data for several nozzle test cases. The spread of computed results is quite noticeable and the present paper endeavours to explain some of the reasons for this. Generally, however, the results confirm that reasonable agreement with experiment is obtained by using classical homogeneous nucleation theory corrected for non-isothermal effects, combined with Young’s droplet growth model. Some calibration of the latter is however required. The equation of state is also shown to have a significant impact on the location of the Wilson point, thus adding to the uncertainty surrounding the condensation theory. With respect to the validation of wet-steam models it is shown that some of the commonly used nozzle test cases have design deficiencies which are particularly apparent in the context of two- and three-dimensional computations. In particular, it is difficult to separate out condensation phenomena from boundary layer effects unless the nozzle geometry is carefully designed to provide near-one-dimensional flow.

Author(s):  
Tim Wittmann ◽  
Christoph Bode ◽  
Jens Friedrichs

Abstract This study investigates the applicability of an Euler-Lagrange approach for the calculation of nucleation and condensation of steam flows. Supersonic nozzles are used as generic validation cases, as their high expansion rates replicate the flow conditions in real turbines. Experimental and numerical validation data for these nozzles are provided by the International Wet Steam Modelling Project of Starzmann et al. (2018). In contrast to most participants of that project, an Euler-Lagrange approach is utilized for this study. Therefore, the classical nucleation theory with corrections and different droplet growth laws is incorporated into the Discrete Phase Model of ANSYS Fluent. Suggestions for an efficient implementation are presented. The Euler-Lagrange results show a good agreement with the experimental and numerical validation data. The sensitivities of the Euler-Lagrange approach to modelling parameters are analysed. Finally, an optimal parameter set for the calculation of nucleation and condensation is proposed.


1971 ◽  
Vol 42 (10) ◽  
pp. 3900-3903 ◽  
Author(s):  
Kazumi Nishioka ◽  
G. M. Pound ◽  
Jens Lothe ◽  
J. P. Hirth

1997 ◽  
Vol 119 (2) ◽  
pp. 305-312 ◽  
Author(s):  
H. Merte ◽  
H. S. Lee

Experiments were conducted in the microgravity of space in which a pool of liquid (R-113), initially at a defined pressure and temperature, was subjected to a step imposed heat flux from a semitransparent thin-film heater forming part of one wall of the container such that boiling is initiated and maintained for a defined period of time at a constant pressure level. Measurements of the transient heater surface and fluid temperatures near the surface were made, noting in particular the conditions at the onset of boiling, along with motion photography of the boiling process in two simultaneous views, from beneath the heating surface and from the side. A total of nine tests were conducted at three levels of heat flux and three levels of subcooling. They were repeated under essentially identical circumstances in each of three space experiments. The absence of buoyancy resulted in the onset of boiling at low heat flux levels, with what is defined as quasi-homogeneous nucleation taking place. The influence of these low levels of heat flux and the pressure effect used to produce the bulk liquid subcooling are accounted for by a modification of classical homogeneous nucleation theory.


Sign in / Sign up

Export Citation Format

Share Document