Sensorless intelligent second-order integral sliding mode maximum power point tracking control for wind turbine system based on wind speed estimation

Author(s):  
Leiming Ma ◽  
Lingfei Xiao ◽  
Jianfeng Yang ◽  
Xinhao Huang ◽  
Xiangshuo Meng

Aiming at the maximum power point tracking for wind turbine, a sensorless intelligent second-order integral sliding mode control based on wind speed estimation is proposed in this article. The maximum wind energy capture is realized by controlling permanent magnet synchronous motor to adjust the speed of wind turbine. First, an intelligent second-order integral sliding mode control is designed for the speed loop and current loop control, which has fast convergence speed, strong robustness and can effectively reduce chattering. Second, a novel cascade observer based on direct sliding mode observer and extended high-gain observer is used to estimate the rotor speed and position. Besides, combined radial basis function neural network is used to estimate the valid value of wind speed. Both simulation and experiment are implemented, which verify the effectiveness of the proposed strategy under the condition of considering both model uncertainty and external disturbance.

Author(s):  
Javad Jafari Fesharaki ◽  
Zahra Heydaran Daroogheh Amnyieh ◽  
Mohammad Jalal Rastegar Fatemi ◽  
Maryam Rastgarpour ◽  
Vahid Jafari Fesharaki

This paper proposes a robust second order sliding mode controller as maximum power point tracking (MPPT) technique in a photovoltaic (PV) boost dc-dc converter with applications to stand-alone systems. The proposed method is independent respect to load type, robust against parametric uncertainties and disturbances. By Lyapunov theorem the asymptotic stability of the closed loop control system is proven. The proposed second order sliding mode controller is simulated with Matlab software and experimental set up in presence of sinusoidal disturbances on output voltage.


Author(s):  
Abbas Kihal ◽  
Fateh Krim ◽  
Billel Talbi ◽  
Abdelbaset Laib ◽  
Abdeslem Sahli

This contribution considers an improved control scheme for three-phase two-stage grid-tied photovoltaic (PV) power system based on integral sliding mode control (ISMC) theory. The proposed control scheme consists of maximum power point tracking (MPPT), DC-Link voltage regulation and grid currents synchronization. A modified voltage-oriented maximum power point tracking (VO-MPPT) method based on ISMC theory is proposed for design of an enhanced MPPT under irradiation changes. Moreover, a novel DC-Link voltage control based on ISMC theory is proposed in order to achieve good regulation of DC-Link voltage over its reference. To inject the generated PV power into the grid with high quality, a voltage oriented control based on space vector modulation (SVM) and ISMC (VOC-ISMC-SVM) has been developed to control the grid currents synchronization. Numerical simulations are performed in Matlab/SimulinkTM environment in order to evaluate the proposed control strategy. In comparison with conventional control scheme, the developed control strategy provides an accurate MPP tracking with less power oscillation as well as a fast and an accurate DC-Link regulation under climatic conditions variations. Moreover, the transfer of the extracted power into the grid is achieved with high quality.


Sign in / Sign up

Export Citation Format

Share Document