scholarly journals Mid to late-Holocene sea-surface temperature variability off north-eastern Newfoundland and its linkage to the North Atlantic Oscillation

The Holocene ◽  
2020 ◽  
Vol 31 (1) ◽  
pp. 3-15 ◽  
Author(s):  
Lisa C Orme ◽  
Arto Miettinen ◽  
Marit-Solveig Seidenkrantz ◽  
Kirsi Tuominen ◽  
Christof Pearce ◽  
...  

In recent decades the surface water temperature and salinity in the Labrador Sea have been influenced by atmospheric circulation patterns, such as the North Atlantic Oscillation (NAO), as well as a trend to increasingly warm atmospheric temperatures in recent years. These changes are concerning, given the important role that temperature and salinity have on deep convection in the Labrador Sea. Yet, due to the shortness of available records, the long-term patterns of climate variability in the region are not clear. Here, a diatom-based reconstruction of summer sea-surface temperature (SST) developed from Trinity Bay, Newfoundland, provides insight into variations of SST since 7.2 cal ka BP in the southwestern Labrador Sea. The results show that the Holocene Thermal Maximum (HTM) lasted until c. 5.2 cal ka BP, which was followed by a gradual cooling trend overprinted by centennial temperature fluctuations of 1–2°C. Long-term cooling was likely the result of declining Northern Hemisphere orbital summer insolation, potentially amplified by long-term changes in surface and bottom water salinity, which led to a gradual reduction in the stratification of the water column. Centennial fluctuations in temperature vary in-phase with reconstructed variations in the NAO, supporting a consistent relationship between atmospheric circulation and SST over centennial-millennial timescales. Other factors influencing the SST variability may have been solar forcing during the mid-Holocene and variations in the strength of the subpolar gyre during the late-Holocene. The most prolonged cool period at 5.2–4.1 cal ka BP coincides with sharply reduced salinity in the Labrador Sea and a weakening of deep ventilation in the northeast Atlantic, highlighting a period with altered ocean surface conditions and circulation across the northern North Atlantic.


2011 ◽  
Vol 75 (3) ◽  
pp. 571-575 ◽  
Author(s):  
José C. Báez ◽  
Juan J. Bellido ◽  
Francisco Ferri-Yáñez ◽  
Juan J. Castillo ◽  
Juan J. Martín ◽  
...  


Author(s):  
M.N Tsimplis ◽  
A.G.P Shaw ◽  
R.A Flather ◽  
D.K Woolf

The thermosteric contribution of the North Atlantic Oscillation (NAO) to the North Sea sea-level for the winter period is investigated. Satellite sea surface temperature as well as in situ measurements are used to define the sensitivity of winter water temperature to the NAO as well as to determine the trends in temperature. The sea surface temperature sensitivity to the NAO is about 0.85 °C per unit NAO, which results in thermosteric sea-level changes of about 1–2 cm per unit NAO. The sensitivity of sea surface temperatures to the NAO is strongly time-dependent. Model data from a two-dimensional hydrodynamic tide+surge model are used in combination with the estimated thermosteric anomalies to explain the observed sea-level changes and, in particular, the sensitivity of the datasets to the NAO variability. The agreement between the model and the observed data is improved by the inclusion of the thermosteric effect.



2012 ◽  
Vol 16 (5) ◽  
pp. 1389-1399 ◽  
Author(s):  
P. De Vita ◽  
V. Allocca ◽  
F. Manna ◽  
S. Fabbrocino

Abstract. Thus far, studies on climate change have focused mainly on the variability of the atmospheric and surface components of the hydrologic cycle, investigating the impact of this variability on the environment, especially with respect to the risks of desertification, droughts and floods. Conversely, the impacts of climate change on the recharge of aquifers and on the variability of groundwater flow have been less investigated, especially in Mediterranean karst areas whose water supply systems depend heavily upon groundwater exploitation. In this paper, long-term climatic variability and its influence on groundwater recharge were analysed by examining decadal patterns of precipitation, air temperature and spring discharges in the Campania region (southern Italy), coupled with the North Atlantic Oscillation (NAO). The time series of precipitation and air temperature were gathered over 90 yr, from 1921 to 2010, using 18 rain gauges and 9 air temperature stations with the most continuous functioning. The time series of the winter NAO index and of the discharges of 3 karst springs, selected from those feeding the major aqueducts systems, were collected for the same period. Regional normalised indexes of the precipitation, air temperature and karst spring discharges were calculated, and different methods were applied to analyse the related time series, including long-term trend analysis using smoothing numerical techniques, cross-correlation and Fourier analysis. The investigation of the normalised indexes highlighted the existence of long-term complex periodicities, from 2 to more than 30 yr, with differences in average values of up to approximately ±30% for precipitation and karst spring discharges, which were both strongly correlated with the winter NAO index. Although the effects of the North Atlantic Oscillation (NAO) had already been demonstrated in the long-term precipitation and streamflow patterns of different European countries and Mediterranean areas, the results of this study allow for the establishment of a link between a large-scale atmospheric cycle and the groundwater recharge of carbonate karst aquifers. Consequently, the winter NAO index could also be considered as a proxy to forecast the decadal variability of groundwater flow in Mediterranean karst areas.



Sign in / Sign up

Export Citation Format

Share Document