Swallowing disturbance due to isolated vagus nerve involvement in systemic lupus erythematosus

Lupus ◽  
2007 ◽  
Vol 16 (9) ◽  
pp. 746-749 ◽  
Author(s):  
K.-H. Yu ◽  
C.-H. Yang ◽  
C.-C. Chu
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Charrise M. Ramkissoon ◽  
Amparo Güemes ◽  
Josep Vehi

AbstractSystemic lupus erythematosus (SLE) is a chronic systemic autoimmune disorder that commonly affects the skin, joints, kidneys, and central nervous system. Although great progress has been made over the years, patients still experience unfavorable secondary effects from medications, increased economic burden, and higher mortality rates compared to the general population. To alleviate these current problems, non-invasive, non-pharmacological interventions are being increasingly investigated. One such intervention is non-invasive vagus nerve stimulation, which promotes the upregulation of the cholinergic anti-inflammatory pathway that reduces the activation and production of pro-inflammatory cytokines and reactive oxygen species, culpable processes in autoimmune diseases such as SLE. This review first provides a background on the important contribution of the autonomic nervous system to the pathogenesis of SLE. The gross and structural anatomy of the vagus nerve and its contribution to the inflammatory response are described afterwards to provide a general understanding of the impact of stimulating the vagus nerve. Finally, an overview of current clinical applications of invasive and non-invasive vagus nerve stimulation for a variety of diseases, including those with similar symptoms to the ones in SLE, is presented and discussed. Overall, the review presents neuromodulation as a promising strategy to alleviate SLE symptoms and potentially reverse the disease.


2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Keisa W. Mathis ◽  
Harald Stauss ◽  
Grace S. Pham ◽  
Suhhyun S. Kim ◽  
Denis V. Kulp

2018 ◽  
Vol 315 (6) ◽  
pp. R1261-R1271 ◽  
Author(s):  
Grace S. Pham ◽  
Lei A. Wang ◽  
Keisa W. Mathis

Recent evidence suggests hypertension may be secondary to chronic inflammation that results from hypoactive neuro-immune regulatory mechanisms. To further understand this association, we used systemic lupus erythematosus (SLE) as a model of inflammation-induced hypertension. In addition to prevalent inflammatory kidney disease and hypertension, SLE patients suffer from dysautonomia in the form of decreased efferent vagal tone. Based on this, the cholinergic anti-inflammatory pathway, an endogenous vagus-to-spleen mechanism that, when activated results in decreases in systemic inflammation, may be compromised in SLE. We hypothesized that stimulation of the cholinergic anti-inflammatory pathway via pharmacological potentiation of the efferent vagus nerve would reduce inflammation and halt the development of hypertension and renal injury in SLE. Female NZBWF1 mice, an established model of murine SLE, and female control mice were treated with galantamine (4 mg/kg daily ip), an acetylcholinesterase inhibitor, or saline for 14 days. At the end of therapy, carotid catheters were surgically implanted and were used to measure mean arterial pressure before the animals were euthanized. Chronic galantamine administration attenuated both splenic and renal cortical inflammation, which likely explains why the hypertension and renal injury (i.e., glomerulosclerosis and fibrosis) typically observed in murine SLE was attenuated following therapy. Based on this, the anti-inflammatory, antihypertensive, and renoprotective effects of galantamine may be mediated through activation of the cholinergic anti-inflammatory pathway. It is possible that dysfunction of the cholinergic anti-inflammatory pathway exists in SLE at the level of the efferent vagus nerve and promoting restoration of its activity through central cholinergic receptor activation may be beneficial.


2020 ◽  
pp. annrheumdis-2020-217872
Author(s):  
Cynthia Aranow ◽  
Yemil Atish-Fregoso ◽  
Martin Lesser ◽  
Meggan Mackay ◽  
Erik Anderson ◽  
...  

ObjectivesMusculoskeletal pain and fatigue are common features in systemic lupus erythematosus (SLE). The cholinergic anti-inflammatory pathway is a physiological mechanism diminishing inflammation, engaged by stimulating the vagus nerve. We evaluated the effects of non-invasive vagus nerve stimulation in patients with SLE and with musculoskeletal pain.Methods18 patients with SLE and with musculoskeletal pain ≥4 on a 10 cm Visual Analogue Scale were randomised (2:1) in this double-blind study to receive transcutaneous auricular vagus nerve stimulation (taVNS) or sham stimulation (SS) for 4 consecutive days. Evaluations at baseline, day 5 and day 12 included patient assessments of pain, disease activity (PtGA) and fatigue. Tender and swollen joint counts and the Physician Global Assessment (PGA) were completed by a physician blinded to the patient’s therapy. Potential biomarkers were evaluated.ResultstaVNS and SS were well tolerated. Subjects receiving taVNS had a significant decrease in pain and fatigue compared with SS and were more likely (OR=25, p=0.02) to experience a clinically significant reduction in pain. PtGA, joint counts and PGA also improved. Pain reduction and improvement of fatigue correlated with the cumulative current received. In general, responses were maintained through day 12. Plasma levels of substance P were significantly reduced at day 5 compared with baseline following taVNS but other neuropeptides, serum and whole blood-stimulated inflammatory mediators, and kynurenine metabolites showed no significant change at days 5 or 12 compared with baseline.ConclusiontaVNS resulted in significantly reduced pain, fatigue and joint scores in SLE. Additional studies evaluating this intervention and its mechanisms are warranted.


Author(s):  
Francis R. Comerford ◽  
Alan S. Cohen

Mice of the inbred NZB strain develop a spontaneous disease characterized by autoimmune hemolytic anemia, positive lupus erythematosus cell tests and antinuclear antibodies and nephritis. This disease is analogous to human systemic lupus erythematosus. In ultrastructural studies of the glomerular lesion in NZB mice, intraglomerular dense deposits in mesangial, subepithelial and subendothelial locations were described. In common with the findings in many examples of human and experimental nephritis, including many cases of human lupus nephritis, these deposits were amorphous or slightly granular in appearance with no definable substructure.We have recently observed structured deposits in the glomeruli of NZB mice. They were uncommon and were found in older animals with severe glomerular lesions by morphologic criteria. They were seen most commonly as extracellular elements in subendothelial and mesangial regions. The deposits ranged up to 3 microns in greatest dimension and were often adjacent to deposits of lipid-like round particles of 30 to 250 millimicrons in diameter and with amorphous dense deposits.


2000 ◽  
Vol 6 (7) ◽  
pp. 821-825 ◽  
Author(s):  
ELIZABETH LERITZ ◽  
JASON BRANDT ◽  
MELISSA MINOR ◽  
FRANCES REIS-JENSEN ◽  
MICHELLE PETRI

Sign in / Sign up

Export Citation Format

Share Document