Evaluation of salt content of curry soup containing coconut milk by near infrared spectroscopy

2018 ◽  
Vol 26 (3) ◽  
pp. 149-158 ◽  
Author(s):  
Ekkapong Cheevitsopon ◽  
Panmanas Sirisomboon

A feasibility study was performed to assess whether near infrared spectroscopy could evaluate the salt content of curry soup containing coconut milk. The soup samples were from the mixing tank, a water content adjusted tank, the ultra-high temperature pipe, and laminated containers of a food processor plant. In addition, fish sauce adjusted samples made from the same recipe but with increasing or decreasing (±30%, 60%, and 90%) sauce content were prepared. There were 113 samples in total, which were scanned using a Fourier-transform near infrared spectrometer. The prediction models for salt content were established using near infrared spectral data in conjunction with partial least squares regression. Calibration models developed using all of the samples were validated using leave-one-out cross validation and test set validation. The unadjusted sample models were validated using test set validation. The results showed that both validation methods for the calibration models using all of the samples provided similar model performance where the r2, root mean square error of calibration/root mean square error of prediction, and residual predictive deviation were 0.956, 0.065%, and 4.77 for cross validation and 0.954, 0.064%, and 4.64 for the test set, respectively. However, the salt unadjusted sample model showed better performance where the r2, RMSEP, and RPD were respectively 0.963, 0.043%, and 5.23, indicating that excellent models can be developed to determine the salt content of curry soup containing coconut milk for any applications, including quality assurance.

2017 ◽  
Vol 26 (1) ◽  
pp. 16-25 ◽  
Author(s):  
Ekkapong Cheevitsopon ◽  
Panmanas Sirisomboon

The feasibility of a near infrared spectroscopy to evaluate the fat content in instant curry soup containing coconut milk including green curry, red curry, massaman curry and panang curry was investigated. The soup samples were collected from a processing line and as the finished product. There were also fat content-adjusted samples where the curry was made from the same recipe as in the processing line but increasing by 30, 60 and 90% coconut milk and reducing by 30, 60 and 90% coconut milk from normal. A Fourier transform near infrared spectrometer was used to collect scans. A partial least squares regression model for fat content was established using near infrared spectral data in conjunction with reference data, which was validated using a leave-one-out cross-validation and test set validation. The test set validation, using a set of unknown samples, showed better prediction performance. The best model developed using vector normalization spectral pre-treatment on 9404–7498 and 6102–5446 cm−1 provided coefficient of determination, root mean square error of prediction, bias and ratio of performance to interquartile values of 0.90, 0.9%, −0.1% and 1.2, respectively, for the validation samples. However, the model developed using samples without fat content adjusted samples gave a slightly lower coefficient of determination (0.89), but provided a lower root mean square error of prediction (0.5%) and acceptable ratio of standard error of validation to the standard deviation (3.2). In addition, the vibration bands of CH2 which was in the long chain fatty acid moiety highly influenced the prediction of fat content in the curry soup. The near infrared spectroscopy protocol developed for the determination of fat could be applied in the instant curry soup production line.


2013 ◽  
Vol 807-809 ◽  
pp. 1967-1971
Author(s):  
Yan Bai ◽  
Xiao Yan Duan ◽  
Hai Yan Gong ◽  
Cai Xia Xie ◽  
Zhi Hong Chen ◽  
...  

In this paper, the content of forsythoside A and ethanol-extract were rapidly determinated by near-infrared reflectance spectroscopy (NIRS). 85 samples of Forsythiae Fructus harvested in Luoyang from July to September in 2012 were divided into a calibration set (75 samples) and a validation set (10 samples). In combination with the partical least square (PLS), the quantitative calibration models of forsythoside A and ethanol-extract were established. The correlation coefficient of cross-validation (R2) was 0.98247 and 0.97214 for forsythoside A and ethanol-extract, the root-mean-square error of calibration (RMSEC) was 0.184 and 0.570, the root-mean-square error of cross-validation (RMSECV) was 0.81736 and 0.36656. The validation set were used to evaluate the performance of the models, the root-mean-square error of prediction (RMSEP) was 0.221 and 0.518. The results indicated that it was feasible to determine the content of forsythoside A and ethanol-extract in Forsythiae Fructus by near-infrared spectroscopy.


2010 ◽  
Vol 16 (2) ◽  
pp. 187-193 ◽  
Author(s):  
Yang Meiyan ◽  
Li Jing ◽  
Nie Shaoping ◽  
Hu Jielun ◽  
Yu Qiang ◽  
...  

Near-infrared spectroscopy (NIRS) was used as a rapid and nondestructive method to determine the content of docosahexaenoic acid (DHA) in powdered oil samples. A total of 82 samples were scanned in the diffuse reflectance mode by Nicolet 5700 FTIR spectrometer and the reference values for DHA was measured by gas chromatography. Calibration equations were developed using partial least-squares regression (PLS) with internal cross-validation. Samples were split in two sets, one set used as calibration (n = 66) whereas the remaining samples (n=16) were used as validation set. Two mathematical treatments (first and second derivative), none (log(1/R)) and standard normal variate as scatter corrections and Savitzky—Golay smoothing were explored. To decide upon the number of PLS factors included in the PLS model, the model with the lowest root mean square error of cross-validation (RMSECV=0.44) for the validation set is chosen. The correlation coefficient (r) between the predicted and the reference results which used as an evaluation parameter for the models is 0.968. The root mean square error of prediction of the final model is 0.59. The results reported in this article demonstrate that FT-NIR measurements can serve as a rapid method to determine DHA in powdered oil.


2019 ◽  
Vol 11 (13) ◽  
pp. 304
Author(s):  
A. Savi ◽  
L. M. de Aguiar ◽  
L. M. S. Tonial ◽  
C. B. B. Lafay ◽  
T. S. Assmann ◽  
...  

A fast and non-destructive method is reported to nitrogen, phosphorus and potassium quantification in sorghum, oat, and maize residues. The reflectance spectra of 261 litter plant samples using near-infrared spectroscopy were obtained with integrating sphere and sampling rotator. Second derivative spectra and Partial Least Squares were used to develop calibration and validation models. The cross-validation (leave-one-out) technique was used to evaluate the performance of the calibration and validation models, based on analytical parameters, root-mean-square error of estimation, determination coefficient, number of latent variables, residual prediction deviation, root-mean-square error of cross-validation. It was concluded that near-infrared spectroscopy and chemometric tools are a fast and non-destructive alternative to determine nitrogen and phosphorus content in sorghum, oat, and maize residues using calibration and validation models developed according to values obtained from traditional chemical methods. For potassium content, the results indicate the low quality (imprecision) of the calibration and validation models.


2018 ◽  
Vol 26 (3) ◽  
pp. 159-168 ◽  
Author(s):  
Chin Hock Lim ◽  
Panmanas Sirisomboon

Toluene swell or equilibrium swelling is universally used by rubber factories to measure the degree of crosslink of their compounded or prevulcanized latices at different stages of production. To apply near infrared spectroscopy for rapid and accurate quality control, spectral acquisition of prevulcanized latex, thin film and thick film was performed using a Fourier transform near infrared spectrometer in diffuse reflection mode across the wavenumber range of 12,500–3600 cm−1. For prevulcanized latex an effective model was developed using partial least squares regression with preprocessing (first derivative + straight line subtraction method). The coefficient of determination (r2), root mean square error of cross validation and bias of the validation set were 0.71, 3.93% and −0.005%, respectively. For the thin film model the r2, root mean square error of cross validation and bias were 0.65, 4.01% and −0.028%, respectively. Whereas for the thick film model the r2, root mean square error of cross validation and bias were 0.70, 4.00% and −0.006%, respectively. Three models including prevulcanized latex, thin film and thick film were validated by 23 unknown samples, providing standard error of prediction and bias of 5.357 and 2.494, 4.565 and 1.001 and 3.641 and −0.961%, respectively, for prevulcanized latex, thin film and thick film. The model developed for the thick film spectra gave the best results.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1460
Author(s):  
Jinming Liu ◽  
Changhao Zeng ◽  
Na Wang ◽  
Jianfei Shi ◽  
Bo Zhang ◽  
...  

Biochemical methane potential (BMP) of anaerobic co-digestion (co-AD) feedstocks is an essential basis for optimizing ratios of materials. Given the time-consuming shortage of conventional BMP tests, a rapid estimated method was proposed for BMP of co-AD—with straw and feces as feedstocks—based on near infrared spectroscopy (NIRS) combined with chemometrics. Partial least squares with several variable selection algorithms were used for establishing calibration models. Variable selection methods were constructed by the genetic simulated annealing algorithm (GSA) combined with interval partial least squares (iPLS), synergy iPLS, backward iPLS, and competitive adaptive reweighted sampling (CARS), respectively. By comparing the modeling performances of characteristic wavelengths selected by different algorithms, it was found that the model constructed using 57 characteristic wavelengths selected by CARS-GSA had the best prediction accuracy. For the validation set, the determination coefficient, root mean square error and relative root mean square error of the CARS-GSA model were 0.984, 6.293 and 2.600, respectively. The result shows that the NIRS regression model—constructed with characteristic wavelengths, selected by CARS-GSA—can meet actual detection requirements. Based on a large number of samples collected, the method proposed in this study can realize the rapid and accurate determination of the BMP for co-AD raw materials in biogas engineering.


Food Research ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 273-280
Author(s):  
C.D.M. Ishkandar ◽  
N.M. Nawi ◽  
R. Janius ◽  
N. Mazlan ◽  
T.T. Lin

Pesticides have long been used in the cabbage industry to control pest infestation. This study investigated the potential application of low-cost and portable visible shortwave near-infrared spectroscopy for the detection of deltamethrin residue in cabbages. A total of sixty organic cabbage samples were used. The sample was divided into four batches, three batches were sprayed with deltamethrin pesticide whereas the remaining batch was not sprayed (control sample). The first three batches of the cabbages were sprayed with the pesticide at three different concentrations, namely low, medium and high with the values of 0.08, 0.11 and 0.14% volume/volume (v/v), respectively. Spectral data of the cabbage samples were collected using visible shortwave near-infrared (VSNIR) spectrometer with wavelengths range between 200 and 1100 nm. Gas chromatography-electron capture detector (GC-ECD) was used to determine the concentration of deltamethrin residues in the cabbages. Partial least square (PLS) regression method was adopted to investigate the relationship between the spectral data and deltamethrin concentration values. The calibration model produced the values of coefficient of determination (R2 ) and the root mean square error of calibration (RMSEC) of 0.98 and 0.02, respectively. For the prediction model, the values of R2 and the root mean square error of prediction (RMSEP) were 0.94 and 0.04, respectively. These results demonstrated that the proposed spectroscopic measurement is a promising technique for the detection of pesticide at different concentrations in cabbage samples.


2018 ◽  
Vol 26 (2) ◽  
pp. 95-100 ◽  
Author(s):  
Yanjie Li ◽  
Wenhao Shao ◽  
Ruxiang Dong ◽  
Jingmin Jiang ◽  
Songfeng Diao

In this study, near infrared spectroscopy has been demonstrated to quickly determine the saponin content in soapnut fruits. Partial least squares analysis combined with pre-processing methods and significance multivariate correlation variable selection was introduced to develop a statistical model calibrated for saponin content in soapnut fruits. The results showed that the first derivative yielded the best partial least squares calibration models with spectra of both the surface of dried fruits and the powder of dry seeded fruits with root mean square error of calibration values of 0.85% and 0.59%, respectively. The surface model presented less accuracy than the powder model. However, when the significance multivariate correlation variable selection method was applied to select the best variables from the spectra, the partial least squares models using spectra of surface and powder samples became similar, with higher R2 values (0.84 and 0.90), lower root mean square error of calibration values of 0.23% and 0.39%. It was suggested that near infrared spectroscopy could be a promising and rapid method for predicting the saponin content in the soapnut fruits without grinding them into powder.


2020 ◽  
Author(s):  
Cheng Li ◽  
Bangsong Su ◽  
Tianlun Zhao ◽  
Cong Li ◽  
Jinhong Chen ◽  
...  

Abstract Background Gossypol found in cottonseeds is toxic to human beings and monogastric animals and is a primary parameter for integrated utilization of cottonseed products. It is usually determined by the techniques relied on complex pretreatment procedures and the samples after determination cannot be used in breeding program, so it is of great importance to predict the gossypol content in cottonseeds rapidly and non-destructively to substitute the traditional analytical method. Results Gossypol content in cottonseeds was investigated by near-infrared spectroscopy (NIRS) and High-performance liquid chromatography (HPLC). Partial least squares regression, combined with spectral pretreatment methods including Savitzky-Golay smoothing, standard normal variate, multiplicative scatter correction, and first derivate, were tested for optimizing the calibration models. NIRS technique was efficient in predicting gossypol content in intact cottonseeds, as revealed by the root-mean-square error of cross-validation (RMSECV), root-mean-square error of prediction (RMSEP), coefficient for determination of prediction (Rp2), and residual predictive deviation (RPD) values for all models, being 0.05–0.07, 0.04–0.06, 0.82–0.92, and 2.3–3.4, respectively. The optimized model pretreated by Savitzky-Golay smoothing + standard normal variate + first derivate resulted in good determination of gossypol content in intact cottonseeds. Conclusions Near infrared spectroscopy coupled with different spectral pretreatments and PLS regression has exhibited the feasibility in predicting gossypol content in intact cottonseeds, rapidly and non-destructively. It could be used as an alternative method to substitute for traditional one to determine the gossypol content in intact cottonseeds.


Planta Medica ◽  
2021 ◽  
Author(s):  
Sophia Mayr ◽  
Simon Strasser ◽  
Christian G. Kirchler ◽  
Florian Meischl ◽  
Stefan Stuppner ◽  
...  

AbstractThe content of the flavonolignan mixture silymarin and its individual components (silichristin, silidianin, silibinin A, silibinin B, isosilibinin A, and isosilibinin B) in whole and milled milk thistle seeds (Silybi mariani fructus) was analyzed with near-infrared spectroscopy. The analytical performance of one benchtop and two handheld near-infrared spectrometers was compared. Reference analysis was performed with HPLC following a Soxhlet extraction (European Pharmacopoeia) and a more resource-efficient ultrasonic extraction. The reliability of near-infrared spectral analysis determined through partial least squares regression models constructed independently for the spectral datasets obtained by the three spectrometers was as follows. The benchtop device NIRFlex N-500 performed the best both for milled and whole seeds with a root mean square error of CV between 0.01 and 0.17%. The handheld spectrometer MicroNIR 2200 as well as the microPHAZIR provided a similar performance (root mean square error of CV between 0.01 and 0.18% and between 0.01 and 0.23%, respectively). We carried out quantum chemical simulation of near-infrared spectra of silichristin, silidianin, silibinin, and isosilibinin for interpretation of the results of spectral analysis. This provided understanding of the absorption regions meaningful for the calibration. Further, it helped to better separate how the chemical and physical properties of the samples affect the analysis. While the study demonstrated that milling of samples slightly improves the performance, it was deemed to be critical only for the analysis carried out with the microPHAZIR. This study evidenced that rapid and nondestructive quantification of silymarin and individual flavonolignans is possible with miniaturized near-infrared spectroscopy in whole milk thistle seeds.


Sign in / Sign up

Export Citation Format

Share Document