Mechanical and thermomechanical properties of vinyl ester/polyurethane IPN based nano-composites

2021 ◽  
pp. 096739112098734
Author(s):  
Jagesh Kumar Ranjan ◽  
Sudipta Goswami

Interpenetrating polymer networks of vinyl ester (VE) resin and polyurethane (PU) were synthesized using blend ratio of 93:7(w/w). Two sets of nanocomposites based on i) pure vinyl ester and ii)VE/PU IPN(93VE), were prepared with organically modified silica nanoparticle (OMS) as filler by 1, 2, 3 and 5% weight of the matrix resin. All the nanocomposites were characterized in terms of mechanical and thermomechanical properties.VE/silica nanocomposite with 2% filler (VES2) showed improvement in ultimate tensile strength by 83.5% and toughness by 42% compared to that of VE resin itself. The IPN based nanocomposite, 93VES2, exhibited 31.14%, 10.8% and 18%greater tensile strength, Young’s modulus and toughness respectively in comparison to that of the base 93VE IPN. IPN based nanocomposites were tougher than VE based nanocomposites. Storage modulus of nanocomposites was lower than that of 93VE and VE matrix system. Higher tanδmax of the 93VE/OMS nanocomposites than that of the 93VE matrix was indication of more elastic nature of the later. Smaller size of dispersed domains was found in SEM micrographs for IPN based nanocomposites than that in micrographs of VE based nanocomposites of corresponding composition.

2007 ◽  
Vol 15 (4) ◽  
pp. 329-335
Author(s):  
C.L. Qin ◽  
H.J. Niu ◽  
X.D. Bai ◽  
Y.C. Ding ◽  
W. Yang ◽  
...  

1992 ◽  
Vol 266 ◽  
Author(s):  
D. Feldman ◽  
D. Banu ◽  
M. Lacasse ◽  
J. Wang

AbstractLignin, a complex natural polymer produced by all vascular terrestrial plants is second in abundance only to cellulose and is the matrix holding plant fibres together. Lignins are recovered mainly as byproducts from woodpulping processes with about 100 million tons produced annually worldwide.Large volume uses for lignin byproduct other than for generation of energy (kraft process) are most likely to be in materials applications.In the last decades many studies aimed to the recycling of different lignins (sulfite, kraft, organosolv, steam exploded, hydrolytic, etc.) in polymeric systems based on thermoplastics, thermosettings, elastomers, adhesives, sealants, etc.Among all the technical lignins, sulfate lignins are chemically the most reactive and are therefore used to modify polymers. The oldest and the most familiar application of lignin as a component of polymeric materials involves the reinforcement of rubber. Multicomponent materials can be created by combination with other macromolecules like polyethylene, polypropylene, or poly(vinyl alcohol) to produce polyblends, block copolymers or interpenetrating polymer networks.The present communication will try to present such examples of polymeric systems based on recycled lignin, and synthetic polymers such as: polyurethane, epoxy, acrylics, silicones.


2016 ◽  
Vol 36 (2) ◽  
pp. 157-163 ◽  
Author(s):  
Ayyanar Athijayamani ◽  
Balasubramaniam Stalin ◽  
Susaiyappan Sidhardhan ◽  
Azeez Batcha Alavudeen

Abstract The present study describes the preparation of aligned unidirectional bagasse fiber-reinforced vinyl ester (BFRVE) composites and their mechanical properties such as tensile, flexural, shear and impact strength. Composites were prepared by a hand lay-up technique developed in our laboratory with the help of a hot press. Mechanical properties were obtained for different fiber contents by varying the number of layers. The obtained tensile property values were compared with the theoretical results. The results show that the tensile strength increased linearly up to 44 wt% and then dropped. However, the tensile modulus increased linearly from 17 wt% to 60 wt%. In the case of flexural properties, the flexural strength increased up to 53 wt% and started to decrease. However, the flexural modulus also increased linearly up to 60 wt%. The impact strength values were higher than the matrix materials for all the specimens. The short beam shear strength values were also increased up to 53 wt% and then dropped. The modified Bowyer and Bader (MBB) model followed by the Hirsch model shows a very good agreement with experimental results in both tensile strength and modulus.


Sign in / Sign up

Export Citation Format

Share Document