scholarly journals Fabrication, characterization, and optimization selection of ceramic particulate reinforced dental restorative composite materials

2022 ◽  
Vol 30 ◽  
pp. 096739112110627
Author(s):  
Ramkumar Yadav

The objective of the article is to explore the fabrication of dental restorative composite materials and the ranking order using the preference selection index (PSI) as a multi criteria decision making (MCDM) technique under a set of conflict performance defining criteria (PDCs). The polymer matrix of the dental restorative composite was prepared using bisphenol a-glycidyl methacrylate (55 wt.%), triethylene glycol dimethacrylate (44 wt.%), camphorquinone (0.3 wt.%), and ethyl 4-(dimethylamino) benzoate (0.7 wt.%). Five different dental restorative composite material compositions were fabricated using hybrid nSiO2-TiO2 particulates with a variation of nSiO2 (0, 2, 4, 6, 8 wt.%) while TiO2 is constant (15 wt.%). The results revealed that an increasing trend has been found in compressive strength, flexural strength, Vickers hardness, etc., while a decreasing trend has been shown in depth of cure, polymerization shrinkage, degree of conversion etc. The performance analysis of five dental composite formulations via the PSI method shows the following ranking order: nS4 > nS6 > nS2 > nS0 > nS8. The obtained experimental results are associated with the ranking order of the different sets of dental composite formulations. Hence, the preference selection index approach is one of the best techniques among MCDM techniques for ranking under different PDCs.

2020 ◽  
Vol 21 (7) ◽  
pp. 2644 ◽  
Author(s):  
Izabela M. Barszczewska-Rybarek ◽  
Marta W. Chrószcz ◽  
Grzegorz Chladek

In this study, novel urethane-dimethacrylate monomers were synthesized from 1,3-bis(1-isocyanato-1-methylethyl)benzene (MEBDI) and oligoethylene glycols monomethacrylates, containing one to three oxyethylene groups. They can potentially be utilized as matrices in dental restorative materials. The obtained monomers were used to prepare four new formulations. Two of them were solely composed of the MEBDI-based monomers. In a second pair, a monomer based on triethylene glycol monomethacrylate, used in 20 wt.%, was replaced with triethylene glycol dimethacrylate (TEGDMA), a reactive diluent typically used in dental materials. For comparison purposes, two formulations, using typical dental dimethacrylates (bisphenol A glycerolate dimethacrylate (Bis-GMA), urethane-dimethacrylate (UDMA) and TEGDMA) were prepared. The monomers and mixtures were tested for the viscosity and density. The homopolymers and copolymers, obtained via photopolymerization, were tested for the degree of conversion, polymerization shrinkage, water sorption and solubility, hardness, flexural strength and modulus. The newly developed formulations achieved promising physico-chemical and mechanical characteristics so as to be suitable for applications as dental composite matrices. A combination of the MEBDI-based urethane-dimethacrylates with TEGDMA resulted in copolymers with a high degree of conversion, low polymerization shrinkage, low water sorption and water solubility, and good mechanical properties. These parameters showed an improvement in relation to currently used dental formulations.


Author(s):  
Abhijeet S Suryawanshi ◽  
Niranjana Behera

This study investigates the effect of smokeless tobacco on the tribological properties of two commercially used dental composite materials: Tetric N-Ceram and Z350 Dentin shade. It is to evaluate the effect of smokeless tobacco on the wear properties of two dental composite materials after some stipulated period. The wear test was conducted on pin-on-disk tribometer in the presence of artificial saliva under different loading conditions of 10, 15 and 20 N. The pins of the dental composite material were immersed in tobacco solution. The tribological behavior was studied after 2 days, 3.5 days, 6 days, 15 days and 1 month which represented the real conditions for the contact of 1 week, 2 weeks, 1 month, 2 months and 5 months, respectively, between the dental material and the tobacco solution. Under different loading conditions, Z350 Dentin material exhibited much less wear than the Tetric N-Ceram material in the presence of synthetic saliva for the specimen with or without tobacco immersion. The microstructure of the pin surface was inspected using scanning electron microscopy.


2017 ◽  
Vol 52 (12) ◽  
pp. 1579-1588 ◽  
Author(s):  
Yuling Xu ◽  
Dong Xie

A number of new liquid urethane-based oligomers were synthesized, characterized and used to formulate the dental composites. Compressive strength and viscosity were used as a screen tool to evaluate the formed composites. Commercial available bisphenol A glycidyl methacrylate and urethane dimethacrylate-based systems were used as controls. Degree of conversion, shrinkage, water-sorption, solubility, flexural strength and diametrial tensile strength were evaluated. The results show that using mixed acrylate/methacrylate or methacrylates with different length to derivatize diisocyanates could be a good strategy to synthesize urethane-based oligomers in a liquid state. The developed triethylene glycol dimethacrylate-free urethane-based composites showed significantly reduced water sorption and solubility, decreased shrinkage and enhanced mechanical strength as compared to commercial resin-based ones.


2013 ◽  
Vol 647 ◽  
pp. 46-52 ◽  
Author(s):  
Hong Zhong ◽  
Xue Gang Zhou ◽  
Qing Cai ◽  
Xiao Ping Yang

To improve the dispersibility of silica nanoparticles in dimethacrylate-based dental restorative composite resins, an efficient way was proposed to surface modify silica nanoparticles with polymer grafts. Firstly, silica nanoparticles reacted with 3-aminopropyl-triethoxysilane and 2-bromoisobutyryl bromide to obtain silica with the derived atom transfer radical polymerization (ATRP) initiators, which subsequently initiated the polymerization of methyl methacrylate to fabricate poly(methyl methacrylate) grafted silica nanohybrids. These nanohybrids could be well dispersed into bisphenol A glycidyl methacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) resin and had good interfacial bonding to the resin matrix. With the addition of modified silica nanopaticles, the flexural strength of the photo-cured composite resin was significantly increased in comparison with that of the unmodified group.


Author(s):  
Markéta Šimková ◽  
Antonín Tichý ◽  
Michaela Dušková ◽  
Jana Vítků ◽  
Lucie Kolatorova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document