A triethylene glycol dimethacrylate- free dental composite for reduced water-sorption and shrinkage

2017 ◽  
Vol 52 (12) ◽  
pp. 1579-1588 ◽  
Author(s):  
Yuling Xu ◽  
Dong Xie

A number of new liquid urethane-based oligomers were synthesized, characterized and used to formulate the dental composites. Compressive strength and viscosity were used as a screen tool to evaluate the formed composites. Commercial available bisphenol A glycidyl methacrylate and urethane dimethacrylate-based systems were used as controls. Degree of conversion, shrinkage, water-sorption, solubility, flexural strength and diametrial tensile strength were evaluated. The results show that using mixed acrylate/methacrylate or methacrylates with different length to derivatize diisocyanates could be a good strategy to synthesize urethane-based oligomers in a liquid state. The developed triethylene glycol dimethacrylate-free urethane-based composites showed significantly reduced water sorption and solubility, decreased shrinkage and enhanced mechanical strength as compared to commercial resin-based ones.

2006 ◽  
Vol 85 (10) ◽  
pp. 950-954 ◽  
Author(s):  
K.J. Anusavice ◽  
N.-Z. Zhang ◽  
C. Shen

Chlorhexidine salts are available in various formulations for dental applications. This study tested the hypothesis that the release of chlorhexidine from a urethane dimethacrylate and triethylene glycol dimethacrylate resin system can be effectively controlled by the chlorhexidine diacetate content and pH. The filler concentrations were 9.1, 23.1, or 33.3 wt%, and the filled resins were exposed to pH 4 and pH 6 acetate buffers. The results showed that Fickian diffusion was the dominant release mechanism. The rates of release were significantly higher in pH 4 buffer, which was attributed to the increase of chlorhexidine diacetate solubility at lower pH. The higher level of filler loading reduced the degree of polymerization, leading to a greater loss of organic components and higher chlorhexidine release rates.


2012 ◽  
Vol 23 (5) ◽  
pp. 508-514 ◽  
Author(s):  
Vinícius E. S. Gajewski ◽  
Carmem S. Pfeifer ◽  
Nívea R. G. Fróes-Salgado ◽  
Letícia C. C. Boaro ◽  
Roberto R. Braga

The organic phase of resin composites is constituted by dimethacrylate resins, the most common monomers being the bisphenol A diglycidildimethacrylate (BisGMA), its ethoxylated version (BisEMA), triethylene glycol dimethacrylate (TEGDMA) and urethane dimethacrylate (UDMA). This study compared the homopolymers formed from the monomers used in restorative dental composites in terms of their degree of conversion (DC) and reaction kinetics (by near infra-red spectroscopy, n=3), mechanical properties (flexural modulus and strength in three point-bending, FM and FS, respectively, n=15), water sorption and solubility (WS and SL, respectively - ISO 4049, n=5). Materials were made photopolymerizable by the addition of camphoroquinone/dimethylamine ethyl methacrylate. TEGDMA showed the highest DC, followed by BisEMA, UDMA and BisGMA, both at 10 min and at 24h (p<0.001). UDMA showed the highest rate of polymerization, followed by TEGDMA, BisEMA and BisGMA (H0=13.254, p<0.001). UDMA and TEGDMA presented similar FM, significantly higher (p<0.001) than BisEMA and BisGMA, which in turn present statistically similar values (p>0.001). For FS, UDMA presented the highest value (p<0.001), followed by TEGDMA, then by BisEMA and BisGMA, which were statistically similar (p>0.001). BisGMA showed the highest WS, and TEGDMA and BisEMA the lowest. UDMA was statistically similar to all (H0=16.074, p<0.001). TEGDMA presented the highest SL, followed by UDMA, BisGMA and BisEMA (p<0.001). The tested homopolymers presented different behaviors in terms of polymerization kinetics, flexural properties, water sorption and solubility. Therefore, the use of copolymers is justified in order to obtain high DC and mechanical properties, as well as good resistance to water degradation.


2020 ◽  
Vol 21 (7) ◽  
pp. 2644 ◽  
Author(s):  
Izabela M. Barszczewska-Rybarek ◽  
Marta W. Chrószcz ◽  
Grzegorz Chladek

In this study, novel urethane-dimethacrylate monomers were synthesized from 1,3-bis(1-isocyanato-1-methylethyl)benzene (MEBDI) and oligoethylene glycols monomethacrylates, containing one to three oxyethylene groups. They can potentially be utilized as matrices in dental restorative materials. The obtained monomers were used to prepare four new formulations. Two of them were solely composed of the MEBDI-based monomers. In a second pair, a monomer based on triethylene glycol monomethacrylate, used in 20 wt.%, was replaced with triethylene glycol dimethacrylate (TEGDMA), a reactive diluent typically used in dental materials. For comparison purposes, two formulations, using typical dental dimethacrylates (bisphenol A glycerolate dimethacrylate (Bis-GMA), urethane-dimethacrylate (UDMA) and TEGDMA) were prepared. The monomers and mixtures were tested for the viscosity and density. The homopolymers and copolymers, obtained via photopolymerization, were tested for the degree of conversion, polymerization shrinkage, water sorption and solubility, hardness, flexural strength and modulus. The newly developed formulations achieved promising physico-chemical and mechanical characteristics so as to be suitable for applications as dental composite matrices. A combination of the MEBDI-based urethane-dimethacrylates with TEGDMA resulted in copolymers with a high degree of conversion, low polymerization shrinkage, low water sorption and water solubility, and good mechanical properties. These parameters showed an improvement in relation to currently used dental formulations.


2010 ◽  
Vol 38 (7) ◽  
pp. 4603-4611 ◽  
Author(s):  
Maria Wisniewska-Jarosinska ◽  
Tomasz Poplawski ◽  
Cezary J. Chojnacki ◽  
Elzbieta Pawlowska ◽  
Renata Krupa ◽  
...  

2019 ◽  
Vol 18 ◽  
pp. e191591
Author(s):  
Kamila Menezes Guedes de Andrade ◽  
Caroline Mathias ◽  
Hugo Felipe do Vale ◽  
Flávio Henrique Baggio Aguiar ◽  
Giselle Maria Marchi

Aim: The yellowing effect is undesirable and can occur in the dental restoration margins when light-cured resin cements containing camphorquinone as photoinitiator is used. This study aimed to evaluate the effect of diphenyliodonium hexafluorphosphate (DPI) in photoinitiator systems that contained different concentrations of camphorquinone (CQ) and dimethylamino ethyl benzoate (EDAB) on resin cements. Methods: A base (1:1) of bisphenol A diglycidyl methacrylate (BisGMA) and triethylene glycol dimethacrylate (TEGDMA) was obtained, and 60wt% of glass fillers was added. Eight formulations were obtained: RC1 (0.5mol% CQ / 1mol% EDAB), RC2 (0.5mol% CQ / 2mol% EDAB), RC3 (1mol% CQ / 1mol% EDAB), RC4 (1mol% CQ / 2mol% EDAB), and RC5 to RC8, which contained the same bases plus 0.5mol% DPI. Experimental resin cements were evaluated by the degree of conversion (DC), L*a*b* color analysis, water sorption (WS) and solubility (S), flexural strength, and Elastic Modulus. The data were analyzed by three-way ANOVA, Tukey’s and Mann-Whitney tests (α = 0.05). Results: The combination of DPI and 0.5mol% CQ increased DC in RC6 and L* in RC5 without increasing the WS and a* b* values. CQ at 1mol% showed higher values of b* and lower values of a*, except for RC3. Groups with 2mol% EDAB showed higher DC. Conclusion: The addition of DPI reduces CQ, generating a decreased yellowing effect, while maintaining adequate properties in the resin cements, especially with 2mol% EDAB.


2014 ◽  
Vol 39 (1) ◽  
pp. E1-E8 ◽  
Author(s):  
G Batarseh ◽  
LJ Windsor ◽  
NY Labban ◽  
Y Liu ◽  
K Gregson

SUMMARY Objective Monomers such as triethylene glycol dimethacrylate (TEGDMA) can leach from dental composites. TEGDMA-induced apoptosis in human pulp has been reported. However, the apoptotic (pro or anti) proteins involved in this process remain unclear. Therefore, the purpose of this study was to determine which apoptotic proteins are enhanced or suppressed during TEGDMA-induced apoptosis. Materials and Methods Human pulp fibroblasts (HPFs) were incubated with different TEGDMA concentrations (0.125-1.0 mM) and cytotoxicity was determined. TEGDMA was shown to be cell cytotoxic at concentrations of 0.50 mM and higher. The highest concentration with no significant cytotoxicity was then incubated (0.25 mM TEGDMA) with the HPFs. Cell lysates were then prepared and the protein concentrations determined. Human Apoptosis Array kits were utilized to detect the relative levels of 43 apoptotic proteins. Results HPFs exposed to TEGDMA showed significant increases in multiple pro-apoptotic proteins such as Bid, Bim, Caspase 3, Caspase 8, and Cytochrome c at 24 hours. Some anti-apoptotic proteins were also altered. Conclusions The results indicated that TEGDMA activates both the extrinsic and intrinsic apoptotic pathways.


2009 ◽  
Vol 42 (16) ◽  
pp. 5976-5982 ◽  
Author(s):  
Hong-Jun Yang ◽  
Bi-Biao Jiang ◽  
Wen-Yan Huang ◽  
Dong-Liang Zhang ◽  
Li-Zhi Kong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document