scholarly journals High-order mixed finite elements for an energy-based model of the polarization process in ferroelectric materials

Author(s):  
Astrid S Pechstein ◽  
Martin Meindlhumer ◽  
Alexander Humer

An energy-based model of the ferroelectric polarization process is presented in the current contribution. In an energy-based setting, dielectric displacement and strain (or displacement) are the primary independent unknowns. As an internal variable, the remanent polarization vector is chosen. The model is then governed by two constitutive functions: the free energy function and the dissipation function. Choices for both functions are given. As the dissipation function for rate-independent response is non-differentiable, it is proposed to regularize the problem. Then, a variational equation can be posed, which is subsequently discretized using conforming finite elements for each quantity. We point out which kind of continuity is needed for each field (displacement, dielectric displacement and remanent polarization) is necessary to obtain a conforming method, and provide corresponding finite elements. The elements are chosen such that Gauss’ law of zero charges is satisfied exactly. The discretized variational equations are solved for all unknowns at once in a single Newton iteration. We present numerical examples gained in the open source software package Netgen/NGSolve.

Author(s):  
Wenwu Cao

Domain structures play a key role in determining the physical properties of ferroelectric materials. The formation of these ferroelectric domains and domain walls are determined by the intrinsic nonlinearity and the nonlocal coupling of the polarization. Analogous to soliton excitations, domain walls can have high mobility when the domain wall energy is high. The domain wall can be describes by a continuum theory owning to the long range nature of the dipole-dipole interactions in ferroelectrics. The simplest form for the Landau energy is the so called ϕ model which can be used to describe a second order phase transition from a cubic prototype,where Pi (i =1, 2, 3) are the components of polarization vector, α's are the linear and nonlinear dielectric constants. In order to take into account the nonlocal coupling, a gradient energy should be included, for cubic symmetry the gradient energy is given by,


1996 ◽  
Vol 75 (2) ◽  
pp. 153-174 ◽  
Author(s):  
Ulrich Brink ◽  
Carsten Carstensen ◽  
Erwin Stein

1997 ◽  
Vol 07 (07) ◽  
pp. 935-955 ◽  
Author(s):  
Ansgar Jüngel ◽  
Paola Pietra

A discretization scheme based on exponential fitting mixed finite elements is developed for the quasi-hydrodynamic (or nonlinear drift–diffusion) model for semiconductors. The diffusion terms are nonlinear and of degenerate type. The presented two-dimensional scheme maintains the good features already shown by the mixed finite elements methods in the discretization of the standard isothermal drift–diffusion equations (mainly, current conservation and good approximation of sharp shapes). Moreover, it deals with the possible formation of vacuum sets. Several numerical tests show the robustness of the method and illustrate the most important novelties of the model.


2012 ◽  
Vol 16 (4) ◽  
pp. 1101-1124 ◽  
Author(s):  
Shuyu Sun ◽  
Abbas Firoozabadi ◽  
Jisheng Kou

Sign in / Sign up

Export Citation Format

Share Document