scholarly journals A Neural Model of Synaptic Plasticity Underlying Short-term and Long-term Habituation

1993 ◽  
Vol 2 (2) ◽  
pp. 111-129 ◽  
Author(s):  
DeLiang Wang
1996 ◽  
Vol 76 (3) ◽  
pp. 2111-2114 ◽  
Author(s):  
X. Y. Lin ◽  
D. L. Glanzman

1. Activation of sensory neurons at 2 Hz for 15 min induces long-term depression (LTD) of isolated Aplysia sensorimotor synapses in cell culture. 2. Prior infusion of the Ca2+ chelator 1,2-bis-(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (BAPTA) into the postsynaptic motor neuron blocks the induction of LTD, but not short-term synaptic depression. 3. Invertebrate central synapses possess the capacity for LTD. This form of long-term synaptic plasticity may play an important role in learning in Aplysia.


2006 ◽  
Vol 103 (13) ◽  
pp. 5125-5130 ◽  
Author(s):  
D. P. Tan ◽  
Q.-Y. Liu ◽  
N. Koshiya ◽  
H. Gu ◽  
D. Alkon

2019 ◽  
Author(s):  
Nicolas Deperrois ◽  
Michael Graupner

AbstractSynaptic efficacy is subjected to activity-dependent changes on short- and long time scales. While short-term changes decay over minutes, long-term modifications last from hours up to a lifetime and are thought to constitute the basis of learning and memory. Both plasticity mechanisms have been studied extensively but how their interaction shapes synaptic dynamics is little known. To investigate how both short- and long-term plasticity together control the induction of synaptic depression and potentiation, we used numerical simulations and mathematical analysis of a calcium-based model, where pre- and postsynaptic activity induces calcium transients driving synaptic long-term plasticity. We found that the model implementing known synaptic short-term dynamics in the calcium transients can be successfully fitted to long-term plasticity data obtained in visual- and somatosensory cortex. Interestingly, the impact of spike-timing and firing rate changes on plasticity occurs in the prevalent firing rate range, which is different in both cortical areas considered here. Our findings suggest that short- and long-term plasticity are together tuned to adapt plasticity to area-specific activity statistics such as firing rates.Author summarySynaptic long-term plasticity, the long-lasting change in efficacy of connections between neurons, is believed to underlie learning and memory. Synapses furthermore change their efficacy reversibly in an activity-dependent manner on the subsecond time scale, referred to as short-term plasticity. It is not known how both synaptic plasticity mechanisms – long- and short-term – interact during activity epochs. To address this question, we used a biologically-inspired plasticity model in which calcium drives changes in synaptic efficacy. We applied the model to plasticity data from visual- and somatosensory cortex and found that synaptic changes occur in very different firing rate ranges, which correspond to the prevalent firing rates in both structures. Our results suggest that short- and long-term plasticity act in a well concerted fashion.


2012 ◽  
Vol 24 (10) ◽  
pp. 2579-2603 ◽  
Author(s):  
Tyler P. Lee ◽  
Dean V. Buonomano

The discrimination of complex auditory stimuli relies on the spatiotemporal structure of spike patterns arriving in the cortex. While recordings from auditory areas reveal that many neurons are highly selective to specific spatiotemporal stimuli, the mechanisms underlying this selectivity are unknown. Using computer simulations, we show that selectivity can emerge in neurons in an entirely unsupervised manner. The model is based on recurrently connected spiking neurons and synapses that exhibit short-term synaptic plasticity. During a developmental stage, spoken digits were presented to the network; the only type of long-term plasticity present was a form of homeostatic synaptic plasticity. From an initially unresponsive state, training generated a high percentage of neurons that responded selectively to individual digits. Furthermore, units within the network exhibited a cardinal feature of vocalization-sensitive neurons in vivo: differential responses between forward and reverse stimulus presentations. Direction selectivity deteriorated significantly, however, if short-term synaptic plasticity was removed. These results establish that a simple form of homeostatic plasticity is capable of guiding recurrent networks into regimes in which complex stimuli can be discriminated. In addition, one computational function of short-term synaptic plasticity may be to provide an inherent temporal asymmetry, thus contributing to the characteristic forward-reverse selectivity.


2020 ◽  
Vol 20 (7) ◽  
pp. 4292-4297
Author(s):  
Young-Tak Seo ◽  
Min-Kyu Park ◽  
Jong-Ho Bae ◽  
Byung-Gook Park ◽  
Jong-Ho Lee

We investigate the characteristics of short-term and long-term synaptic plasticity in a Si-based fieldeffect transistor (FET)-type memory device. An Al2O3/HfO2/Si3N4/SiO2 gate dielectric stack is used to realize short-term and long-term plasticity (STP/LTP). Si3N4 and HfO2 layers are designed to charge trap layer for synaptic device. The mechanism of STP and LTP operation is analyzed by considering the device response to the potentiation and depression pulses and retention measurement of the memory functionality. To investigate the STP operation, paired pulse facilitation (PPF) measurement is performed. The retention characteristic is also studied to validate the LTP property of the device. By investigating a device with an Al2O3/HfO2/Si3N4 stack as a control device, it is shown that the Al2O3/HfO2/Si3N4/SiO2 stack device is suitable for a synaptic device in neuromorphic systems.


Sign in / Sign up

Export Citation Format

Share Document