Neurotrophins and Proneurotrophins: Focus on Synaptic Activity and Plasticity in the Brain

2017 ◽  
Vol 23 (6) ◽  
pp. 587-604 ◽  
Author(s):  
Julien Gibon ◽  
Philip A. Barker

Neurotrophins have been intensively studied and have multiple roles in the brain. Neurotrophins are first synthetized as proneurotrophins and then cleaved intracellularly and extracellularly. Increasing evidences demonstrate that proneurotrophins and mature neurotrophins exerts opposing role in the central nervous system. In the present review, we explore the role of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT3), and neurotrophin 4 (NT4) and their respective proform in cellular processes related to learning and memory. We focused on their roles in synaptic activity and plasticity in the brain with an emphasis on long-term potentiation, long-term depression, and basal synaptic transmission in the hippocampus and the temporal lobe area. We also discuss new findings on the role of the Val66Met polymorphism on the BDNF propeptide on synaptic activity.

2010 ◽  
Vol 391 (4) ◽  
Author(s):  
Shigetaka Yoshida

Abstract Klk8 is a tryptic serine protease with limited substrate specificity. Klk8 mRNA is expressed in many developing organs, whereas its expression is confined to limited regions, including the hippocampus, in adults. In the hippocampus, Klk8 is involved in activity-dependent synaptic changes such as long-term potentiation, which was found to be suppressed in Klk8 knockout (KO) mice. Oligodendrocytes only expressed Klk8 mRNA after injury to the central nervous system. The epidermis of the skin is one of the tissues that exhibits a high level of KLK8 expression. Klk8 might be involved in desquamation through the degradation of adhesive molecules that connect layers of the epidermis. Klk8 might thus be involved in tissue development and rearrangement.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yuto Takeda ◽  
Katsuhiko Hata ◽  
Tokio Yamazaki ◽  
Masaki Kaneko ◽  
Osamu Yokoi ◽  
...  

Synaptic plasticity is vital for learning and memory in the brain. It consists of long-term potentiation (LTP) and long-term depression (LTD). Spike frequency is one of the major components of synaptic plasticity in the brain, a noisy environment. Recently, we mathematically analyzed the frequency-dependent synaptic plasticity (FDP) in vivo and found that LTP is more likely to occur with an increase in the frequency of background synaptic activity. Meanwhile, previous studies suggest statistical fluctuation in the amplitude of background synaptic activity. Little is understood, however, about its contribution to synaptic plasticity. To address this issue, we performed numerical simulations of a calcium-based synapse model. Then, we found attenuation of the tendency to become LTD due to an increase in the fluctuation of background synaptic activity, leading to an enhancement of synaptic weight. Our result suggests that the fluctuation affects synaptic plasticity in the brain.


Author(s):  
Sujeong Yang ◽  
Sylvain Gigout ◽  
Angelo Molinaro ◽  
Yuko Naito-Matsui ◽  
Sam Hilton ◽  
...  

AbstractPerineuronal nets (PNNs) are chondroitin sulphate proteoglycan-containing structures on the neuronal surface that have been implicated in the control of neuroplasticity and memory. Age-related reduction of chondroitin 6-sulphates (C6S) leads to PNNs becoming more inhibitory. Here, we investigated whether manipulation of the chondroitin sulphate (CS) composition of the PNNs could restore neuroplasticity and alleviate memory deficits in aged mice. We first confirmed that aged mice (20-months) showed memory and plasticity deficits. They were able to retain or regain their cognitive ability when CSs were digested or PNNs were attenuated. We then explored the role of C6S in memory and neuroplasticity. Transgenic deletion of chondroitin 6-sulfotransferase (chst3) led to a reduction of permissive C6S, simulating aged brains. These animals showed very early memory loss at 11 weeks old. Importantly, restoring C6S levels in aged animals rescued the memory deficits and restored cortical long-term potentiation, suggesting a strategy to improve age-related memory impairment.


Author(s):  
Ana Turchetti-Maia ◽  
Tal Shomrat ◽  
Binyamin Hochner

We show that the cephalopod vertical lobe (VL) is a promising system for assessing the function and organization of the neuronal circuitry mediating complex learning and memory behavior. Studies in octopus and cuttlefish VL networks suggest an independent evolutionary convergence into a matrix organization of a divergence-convergence (“fan-out fan-in”) network with activity-dependent long-term plasticity mechanisms. These studies also show, however, that the properties of the neurons, neurotransmitters, neuromodulators, and mechanisms of induction and maintenance of long-term potentiation are different from those evolved in vertebrates and other invertebrates, and even highly variable among these two cephalopod species. This suggests that complex networks may have evolved independently multiple times and that, even though memory and learning networks share similar organization and cellular processes, there are many molecular ways of constructing them.


1996 ◽  
Vol 3 (1) ◽  
pp. 42-48 ◽  
Author(s):  
D K Selig ◽  
M R Segal ◽  
D Liao ◽  
R C Malenka ◽  
R Malinow ◽  
...  

Proteomes ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 40 ◽  
Author(s):  
Joongkyu Park

Synaptic plasticity has been considered a key mechanism underlying many brain functions including learning, memory, and drug addiction. An increase or decrease in synaptic activity of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) complex mediates the phenomena as shown in the cellular models of synaptic plasticity, long-term potentiation (LTP), and depression (LTD). In particular, protein phosphorylation shares the spotlight in expressing the synaptic plasticity. This review summarizes the studies on phosphorylation of the AMPAR pore-forming subunits and auxiliary proteins including transmembrane AMPA receptor regulatory proteins (TARPs) and discusses its role in synaptic plasticity.


Sign in / Sign up

Export Citation Format

Share Document