scholarly journals Using passive control by a pendulum in a portal frame platform with piezoelectric energy harvesting

2017 ◽  
Vol 24 (16) ◽  
pp. 3684-3697 ◽  
Author(s):  
Rodrigo T Rocha ◽  
Jose M Balthazar ◽  
Angelo M Tusset ◽  
Vinicius Piccirillo

This work presents a passive control strategy using a pendulum on a simple portal frame structure, with two-to-one internal resonance, with a piezoelectric material coupling as a means of energy harvesting. In addition, the system is externally base-excited by an electro-dynamical shaker with harmonic output. Due to internal resonance the system may present the phenomenon of saturation, which provides some nonlinear dynamical behavior to the system. A pendulum is coupled to control nonlinear behaviors, leading to a periodic orbit, which is necessary to maintain energy harvesting. The results show that the system presents, most of the time, as being quasiperiodic. However, it does not present as being chaotic. With the pendulum, it was possible to control most of these quasiperiodic behaviors, leading to a periodic orbit. Moreover, it is possible to eliminate the need for an active or semi-active control, which are usually more complex. In addition, the control provides a way to detune the energy captured to the desired operating frequency.

Author(s):  
J. M. Balthazar ◽  
R. T. Rocha ◽  
R. M. F. L. Brasil ◽  
A. M. Tusset ◽  
B. R. de Pontes ◽  
...  

There has been much recent interest in the concepts of electro-mechanical systems that are able to scavenge, or harvest energy from their operating environment. Here, we present the extraction of energy from a simple portal frame structure excited via its second (first symmetric) mode. As 2:1 internal resonance is present between that mode and the first (sway) mode, the phenomenon of mode saturation and energy exchange (modal coupling) occurs. Energy pumped into the system through the second (vertical) mode is partially transferred to the horizontal (sway) mode. This paper presents results of numerical simulations of these phenomena and energy harvesting using a nonlinear piezoelectric material as a means of energy transduction. An evaluation of the energy available for harvesting in each of the considered modes is computed.


2020 ◽  
Vol 15 (12) ◽  
Author(s):  
Rodrigo T. Rocha ◽  
Angelo M. Tusset ◽  
Mauricio A. Ribeiro ◽  
Wagner B. Lenz ◽  
Remei Haura Junior ◽  
...  

Abstract In this paper, we consider the application of the piezoelectric energy harvesting using a portal frame structure of two-degrees-of-freedom. The piezoelectric material is considered as a linear device using a capacitive mathematical model. The portal structure is of two-degrees-of-freedom considering with quadratic coupling between the first and second modes of vibration. 2:1 internal resonance between the first and second modes is set, which is a particular condition of this type of system due to the appearance of a saturation phenomenon. As this phenomenon causes the system to start vibrating from the second mode and, at steady-state, vibrates at the first mode, the objective of this work is to verify the energy uptake, considering the different positioning of a piezoelectric material, which is coupled to the supported beam and/or to the column. In addition, the structure is excited by a nonideal DC motor with a limited power supply. The results show a considerably nonlinear behavior due to the nonideal motor, and, with the saturation phenomenon, it is more efficient to collect energy by coupling the PZT to the column. The investigation of the stability of the system due to the piezoelectric coefficient Θ is also taken into account, which is carried out by numerical tools as phase planes, Poincare maps, bifurcation diagrams, and 0–1 test.


2016 ◽  
Vol 10 (3) ◽  
pp. 147 ◽  
Author(s):  
Rodrigo Tumolin Rocha ◽  
Jose Manoel Balthazar ◽  
Angelo Marcelo Tusset ◽  
Vinicius Piccirillo ◽  
Jorge Luis Palacios Felix

1994 ◽  
Vol 116 (2) ◽  
pp. 388-395 ◽  
Author(s):  
S. Vadde ◽  
J. K. Allen ◽  
F. Mistree

In this paper we present an extension to the traditional compromise Decision Support Problem (DSP) formulation. In this formulation we use Bayesian statistics to model uncertainties associated with the information being used. In an earlier paper we have introduced a compromise DSP that accounts for uncertainty using fuzzy set theory. In this paper we describe the Bayesian Decision Support Problem. We use this formulation to design a portal frame structure. We discuss the results and compare them with those obtained using the fuzzy DSP. Finally, we discuss the efficacy of incorporating Bayesian statistics into the traditional compromise DSP formulation and describe some of the pending research issues.


1967 ◽  
Vol 38 (1) ◽  
pp. 143-146
Author(s):  
R SHEPHERD ◽  
W M EL DAKHAKHNI ◽  
E R BRYAN

2011 ◽  
Vol 71-78 ◽  
pp. 3605-3609
Author(s):  
De Zhi Liang ◽  
Min Huang

In recent years, as the portal frame’s height toward higher and the span toward wider, the influence of wind vibration becomes more and more prominent among the portal frame structure. In the design of the portal frame, there are many different opinions on whether considering the impact of the vertical wind vibration to the portal frame. This paper taking a true engineering as an example, using finite element software to establish the solid model of the portal frame structure, selecting the junction of purlin and roof as a node of imposing vertical fluctuating wind load, we made numerical simulation analysis of vertical wind vibration. The simulation results will be compared with data of the internal forces and deformation under the average wind pressure. The results showed that: vertical wind vibration has a prominent effect to the portal frame and should be considered in the design.


Author(s):  
Rodrigo T. Rocha ◽  
Jose M. Balthazar ◽  
Angelo M. Tusset ◽  
Vinicius Piccirillo ◽  
Frederic C. Janzen ◽  
...  

This work aims to study the modal coupling of a nonlinear two-degrees-of-freedom portal frame platform and a numerical analysis of the system with a nonlinear piezoelectric (PZT) material coupled to one of its columns, both externally base-excited. The nonlinear platform possesses two-to-one internal resonance between its two vibration modes and presenting the saturation phenomenon. The nonlinearities of the piezoelectric material are considered by a nonlinear mathematical relation. Here, it is considered an electro-dynamical shaker with harmonic output. The employed methodology to carry out the analysis of this work was: the application of the method of multiple scales to find the best configuration of the parameters, and to find some kind of phenomena due to the two-to-one internal resonance; several numerical simulations were carried out to optimize the energy harvesting through parametrical variations, bifurcation diagrams, stability diagrams. It will be analyzed: the influence of the nonlinearity of the piezoelectric material and of the electro-dynamical shaker on the energy harvesting. Results showed great influence of the nonlinearity of the material and using the electro-dynamical device. It was possible to gain considerably in energy harvesting and stability of the system.


Sign in / Sign up

Export Citation Format

Share Document