Differential evolution algorithm based tilt integral derivative control for LFC problem of an interconnected hydro-thermal power system

2017 ◽  
Vol 24 (17) ◽  
pp. 3952-3973 ◽  
Author(s):  
Pretty Neelam Topno ◽  
Saurabh Chanana

Conventional control techniques such as proportional integral (PI) control and proportional integral derivative (PID) control are widely used as the load frequency controller in power system control applications; however, the increase in complexity of the power system is degrading the performance of classical control. Therefore, in this paper a new control approach using fractional calculus has been proposed for the load frequency control problem of two-area hydro-thermal power system. The paper presents an interconnected hydro-thermal power system working under different operating conditions introduced in the form of various nonlinearities. Four case studies have been presented in this paper considering transient analysis with (i) different loading conditions, (ii) parameter variations, (iii) different nonlinearities (governor dead band nonlinearity, time delay and generation rate constraints), and (iv) superconducting magnetic energy storage (SMES) device. A tilt integral derivative (TID) control has been presented as a secondary controller to stabilize the frequency deviations occurring in the two-area power system with the above-mentioned different operating conditions. The parameters of TID controller have been optimized using a differential evolution algorithm which solves an optimization problem formulated using the integral of time-weighted absolute error (ITAE) performance index. In addition, a comparison of dynamic system response obtained using TID control and PID control has been presented, which focusses on the better performance of TID control over PID control in an interconnected power system.

2019 ◽  
Vol 13 (4) ◽  
pp. 323-330
Author(s):  
Alireza Sina ◽  
Damanjeet Kaur

In this paper, Proportional Integral Derivative (PID) controller is designed using Differential Evolution (DE) algorithm to Load Frequency Control (LFC) in three areas of an interconnected power system. The proposed controller has appropriate dynamic response, so it increases damping in transient state in unhealthy conditions. Different generators have been used in three areas. Area 1 includes thermal non-reheat generator and two thermal reheat generators; area 2 includes hydro and thermal non-reheat generators, and area 3 includes hydro and thermal reheat generators. In order to evaluate the performance of the controller, Sim/Matlab software is used. Simulation results show that the controller designed using DE algorithm is not affected by load changes, disturbance, or system parameters changes. Comparing the results of proposed algorithm with other load frequency control algorithms, such as PSO and GA, it has been found that this method has a more appropriate response and satisfactory performance


Author(s):  
Deepak Kumar Lal ◽  
Ajit K. Barisal ◽  
Manish Tripathy

Background: This paper presents dynamic performance analysis of isolated wind-diesel power system. A dual mode controller is proposed for pitch control of wind turbine generator. Methods: The parameters of the controller are optimized by Differential Evolution (DE) algorithm. The hybrid model was simulated with the proposed load frequency controller (LFC) by considering step load perturbation. The minimization of time multiplied integral of absolute error is considered as the objective function. The performance of the proposed controller is compared with the published result of the optimal controller. Further, the performance of the system is investigated by incorporating Super Conducting Magnetic Energy Storage (SMES) and Fuel Cell (FC). Also, the dynamic performance is investigated for changing step load perturbations. Furthermore, the response of the system is analyzed towards random loading. Results: Finally, sensitivity analysis is done by varying the system parameters and operating conditions from their nominal values. Conclusion: The simulation results show that the proposed dual mode DE optimized controller gives better transient and steady state response.


Sign in / Sign up

Export Citation Format

Share Document