Differential Evolution Algorithm Optimized Dual Mode Load Frequency Controller for Isolated Wind-Diesel Power System with SMES & Fuel Cell

Author(s):  
Deepak Kumar Lal ◽  
Ajit K. Barisal ◽  
Manish Tripathy

Background: This paper presents dynamic performance analysis of isolated wind-diesel power system. A dual mode controller is proposed for pitch control of wind turbine generator. Methods: The parameters of the controller are optimized by Differential Evolution (DE) algorithm. The hybrid model was simulated with the proposed load frequency controller (LFC) by considering step load perturbation. The minimization of time multiplied integral of absolute error is considered as the objective function. The performance of the proposed controller is compared with the published result of the optimal controller. Further, the performance of the system is investigated by incorporating Super Conducting Magnetic Energy Storage (SMES) and Fuel Cell (FC). Also, the dynamic performance is investigated for changing step load perturbations. Furthermore, the response of the system is analyzed towards random loading. Results: Finally, sensitivity analysis is done by varying the system parameters and operating conditions from their nominal values. Conclusion: The simulation results show that the proposed dual mode DE optimized controller gives better transient and steady state response.

2017 ◽  
Vol 24 (17) ◽  
pp. 3952-3973 ◽  
Author(s):  
Pretty Neelam Topno ◽  
Saurabh Chanana

Conventional control techniques such as proportional integral (PI) control and proportional integral derivative (PID) control are widely used as the load frequency controller in power system control applications; however, the increase in complexity of the power system is degrading the performance of classical control. Therefore, in this paper a new control approach using fractional calculus has been proposed for the load frequency control problem of two-area hydro-thermal power system. The paper presents an interconnected hydro-thermal power system working under different operating conditions introduced in the form of various nonlinearities. Four case studies have been presented in this paper considering transient analysis with (i) different loading conditions, (ii) parameter variations, (iii) different nonlinearities (governor dead band nonlinearity, time delay and generation rate constraints), and (iv) superconducting magnetic energy storage (SMES) device. A tilt integral derivative (TID) control has been presented as a secondary controller to stabilize the frequency deviations occurring in the two-area power system with the above-mentioned different operating conditions. The parameters of TID controller have been optimized using a differential evolution algorithm which solves an optimization problem formulated using the integral of time-weighted absolute error (ITAE) performance index. In addition, a comparison of dynamic system response obtained using TID control and PID control has been presented, which focusses on the better performance of TID control over PID control in an interconnected power system.


Author(s):  
Muhammad Abdillah ◽  

Load frequency control (LFC) problem has been a foremost issue in electrical power system operation and is becoming more important recently with growing size, changing structure, and complexity in interconnected power systems. In general, LFC system utilizes simple proportional integral (PI) controller. However, due to the PI control parameters are commonly adjusted based on classical or trial-error method (TEM), it is incapable of obtaining good dynamic performance for a wide range of operating conditions and various load change scenarios in a multi-area power system. This paper introduces a novel control scheme for load frequency control (LFC) using hybrid fuzzy proportional integral (fuzzy PI) and linear quadratic regulator (LQR) optimal control, where fuzzy logic control (FLC) is used to adjust the gains KP and KI of PI controller which called fuzzy PI in this paper, while the LQR optimal control method is employed to obtain the feedback gain KOP through Algebraic Riccati Equation (ARE). The merit of both control strategies is to tune their control feedback gains, which are KP, KI and KOP, regarding various system operating conditions. Artificial immune system (AIS) via clonal selection is utilized to optimize the membership function (MF) of fuzzy PI and weighting matrices Q and R of LQR optimal control in order to obtain their optimal feedback gains. To examine the efficacy of the proposed method, LFC of two-area power system model is utilized as a test system. The amalgamation of fuzzy PI-LQR is applied to improve the dynamic performance of two-area LFC. Other control schemes such as PI controller, hybrid PI controllerLQR, and hybrid fuzzy PI-LQR are also investigated to the studied a test system. The obtained simulation results show that the proposed method could compress the settling time and decrease the overshoot of LFC which is better than other approaches that are also employed to the tested system in this study.


2019 ◽  
Vol 13 (4) ◽  
pp. 323-330
Author(s):  
Alireza Sina ◽  
Damanjeet Kaur

In this paper, Proportional Integral Derivative (PID) controller is designed using Differential Evolution (DE) algorithm to Load Frequency Control (LFC) in three areas of an interconnected power system. The proposed controller has appropriate dynamic response, so it increases damping in transient state in unhealthy conditions. Different generators have been used in three areas. Area 1 includes thermal non-reheat generator and two thermal reheat generators; area 2 includes hydro and thermal non-reheat generators, and area 3 includes hydro and thermal reheat generators. In order to evaluate the performance of the controller, Sim/Matlab software is used. Simulation results show that the controller designed using DE algorithm is not affected by load changes, disturbance, or system parameters changes. Comparing the results of proposed algorithm with other load frequency control algorithms, such as PSO and GA, it has been found that this method has a more appropriate response and satisfactory performance


Author(s):  
Hossein Shayeghi ◽  
Heidar Ali Shayanfar

In this paper, a new approach based on µ-synthesis technique is presented for the robust decentralized load frequency controller design of a restructured multi area power under the possible contracts. In each control area, the connections between this area and the rest of the system and the effects of possible contracts are treated as a set of new disturbance signals to achieve decentralization. It is shown that, subject to a condition based on the structured singular values and H infinity norm, each local area load frequency controller can be designed independently. The stability condition for the overall system can be stated as to achieve a sufficient interaction margin and a sufficient gain and phase margin defined in classical feedback theory during each independent design. The proposed method is tested on a four-area power system with the possible contracts and compared with the PI controller for a wide range of operating conditions and load changes. The resulting controllers are shown to minimize the effects of load disturbances and maintain robust performance in the presence of specified uncertainties and system nonlinearities.


2020 ◽  
Vol 5 (1) ◽  
pp. 2
Author(s):  
Hady H. Fayek

Remote farms in Africa are cultivated lands planned for 100% sustainable energy and organic agriculture in the future. This paper presents the load frequency control of a two-area power system feeding those farms. The power system is supplied by renewable technologies and storage facilities only which are photovoltaics, biogas, biodiesel, solar thermal, battery storage and flywheel storage systems. Each of those facilities has 150-kW capacity. This paper presents a model for each renewable energy technology and energy storage facility. The frequency is controlled by using a novel non-linear fractional order proportional integral derivative control scheme (NFOPID). The novel scheme is compared to a non-linear PID controller (NPID), fractional order PID controller (FOPID), and conventional PID. The effect of the different degradation factors related to the communication infrastructure, such as the time delay and packet loss, are modeled and simulated to assess the controlled system performance. A new cost function is presented in this research. The four controllers are tuned by novel poor and rich optimization (PRO) algorithm at different operating conditions. PRO controller design is compared to other state of the art techniques in this paper. The results show that the PRO design for a novel NFOPID controller has a promising future in load frequency control considering communication delays and packet loss. The simulation and optimization are applied on MATLAB/SIMULINK 2017a environment.


Sign in / Sign up

Export Citation Format

Share Document