The effects of nonlinear energy sink and piezoelectric energy harvester on aeroelastic instability of an airfoil

2021 ◽  
pp. 107754632199358
Author(s):  
Ali Fasihi ◽  
Majid Shahgholi ◽  
Saeed Ghahremani

The potential of absorbing and harvesting energy from a two-degree-of-freedom airfoil using an attachment of a nonlinear energy sink and a piezoelectric energy harvester is investigated. The equations of motion of the airfoil coupled with the attachment are solved using the harmonic balance method. Solutions obtained by this method are compared to the numerical ones of the pseudo-arclength continuation method. The effects of parameters of the integrated nonlinear energy sink-piezoelectric attachment, namely, the attachment location, nonlinear energy sink mass, nonlinear energy sink damping, and nonlinear energy sink stiffness on the dynamical behavior of the airfoil system are studied for both subcritical and supercritical Hopf bifurcation cases. Analyses demonstrate that absorbing vibration and harvesting energy are profoundly affected by the nonlinear energy sink parameters and the location of the attachment.

2017 ◽  
Vol 38 (7) ◽  
pp. 1019-1030 ◽  
Author(s):  
Xiang Li ◽  
Yewei Zhang ◽  
Hu Ding ◽  
Liqun Chen

Author(s):  
Youzuo Jin ◽  
Kefu Liu ◽  
Deli Li ◽  
Liuyang Xiong ◽  
Lihua Tang

Abstract In this paper, a non-traditional variant nonlinear energy sink (NES) is developed for simultaneous vibration suppression and energy harvesting in a broad frequency band. The non-traditional variant NES consists of a cantilever beam attached by a pair of magnets at its free end, a pair of the so-called continuous-contact blocks, and a pair of coils. The beam is placed between the continuous-contact blocks. The constraint of the continuous-contact blocks forces the beam to deflect nonlinearly. Each of the magnet-coil pairs forms an electromagnetic energy harvester. Different from a traditional way that attaches the coils to the primary mass, the developed setup has the coils fixed to the base. First, the developed apparatus is described. Subsequently, the system modeling and parameter identification are addressed. The performance of the apparatus under transient responses is examined by using computer simulation. The results show that the proposed apparatus behaves similarly as the NES with the following features: 1:1 resonance, targeted energy transfer, initial energy dependence, etc.


2013 ◽  
Vol 698 ◽  
pp. 89-98 ◽  
Author(s):  
Etienne Gourc ◽  
Sébastien Seguy ◽  
Guilhem Michon ◽  
Alain Berlioz

This paper presents the interest of an original absorber of vibration in order to reduce chatter vibration in turning process. The device is composed of a linear oscillator corresponding to a flexible cutting tool subject to chatter strongly coupled to a Nonlinear Energy Sink (NES), with purely cubic stiffness. The novelty of this work is the use of a nonlinear cutting law, more accurate for modeling the cutting process. The delayed equations of motion are analyzed using a combination of the method of multiple scales and harmonic balance. Different types of responses regimes are revealed such as periodic response and also Strongly Modulated Response (SMR). Analytic results are then compared with numerical simulations. Finally, the potential of the NES is demonstrated to control chatter in turning process.


2021 ◽  
Author(s):  
Yunfa Zhang ◽  
Xianren Kong ◽  
Chengfei Yue ◽  
Huai Xiong

Abstract Nonlinear energy sink (NES) refers to a typical passive vibration device connected to linear or weakly nonlinear structures for vibration absorption and mitigation. This study investigates the dynamics of 1-dof and 2-dof NES with nonlinear damping and combined stiffness connected to a linear oscillator. For the system of 1-dof NES, a truncation damping and failure frequency are revealed through bifurcation analysis using the complex variable averaging method. The frequency detuning interval for the existence of the strongly modulated response (SMR) is also reported . For the system of 2-dof NES, it is reported in a similar bifurcation analysis that the mass distribution between NES affects the maximum value of saddle-node bifurcation. To obtain the periodic solution of the 2-dof NES system with the consideration of frequency detuning, the incremental harmonic balance method (IHB) and Floquet theory are employed. The corresponding response regime is obtained by Poincare mapping, it shows that the responses of the linear oscillator and 2-dof NES are not always consistent, and 2-dof NES can generate extra SMR than 1-dof NES. Finally, the vibration suppression effect of the proposed NES with nonlinear damping and combined stiffness is analyzed and verified by the energy spectrum, and it also shows that the 2-dof NES system demonstrates better performance.


2018 ◽  
Vol 30 (5) ◽  
pp. 869-886
Author(s):  
P. KUMAR ◽  
S. NARAYANAN ◽  
S. GUPTA

This study investigates the phenomenon of targeted energy transfer (TET) from a linear oscillator to a nonlinear attachment behaving as a nonlinear energy sink for both transient and stochastic excitations. First, the dynamics of the underlying Hamiltonian system under deterministic transient loading is studied. Assuming that the transient dynamics can be partitioned into slow and fast components, the governing equations of motion corresponding to the slow flow dynamics are derived and the behaviour of the system is analysed. Subsequently, the effect of noise on the slow flow dynamics of the system is investigated. The Itô stochastic differential equations for the noisy system are derived and the corresponding Fokker–Planck equations are numerically solved to gain insights into the behaviour of the system on TET. The effects of the system parameters as well as noise intensity on the optimal regime of TET are studied. The analysis reveals that the interaction of nonlinearities and noise enhances the optimal TET regime as predicted in deterministic analysis.


Sign in / Sign up

Export Citation Format

Share Document