frequency detuning
Recently Published Documents


TOTAL DOCUMENTS

140
(FIVE YEARS 28)

H-INDEX

16
(FIVE YEARS 2)

Author(s):  
Omar Sadek ◽  
Atef Mohany ◽  
Marwan A. Hassan

Abstract For decades, fluidelastic instability (FEI) has been known to cause dramatic mechanical failures in tube bundles. Therefore, it has been extensively studied to mitigate its catastrophic consequences. Most of these studies were conducted in controlled experiments where significant simplifications to the geometry and flow conditions were utilized. One of these simplifications is the assumption that all tubes have the same dynamic characteristics. However, in steam generators with U-bend tube configuration, the natural frequencies of tubes are nonuniform due to manufacturing tolerances and tubes' curvature in the U-bend region. Thus, this investigation aims to understand the rule of frequency variation (detuning) on FEI in two-phase flow. This includes investigating the effect of detuning on transverse and streamwise FEI for air-water mixture flow. The role of FEI damping and stiffness couplings was investigated over the entire range of air void fraction, or equivalently, the mass-damping parameter. It was found that frequency detuning could elevate the stability threshold caused by either coupling at high air void fraction in the case of transverse FEI. Furthermore, the frequency detuning had a marginal effect on the stability threshold for water flow. It was observed that the mass-damping parameter has a critical impact on FEI under detuning conditions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Caique C. Rodrigues ◽  
Cauê M. Kersul ◽  
André G. Primo ◽  
Michal Lipson ◽  
Thiago P. Mayer Alegre ◽  
...  

AbstractExperimental exploration of synchronization in scalable oscillator microsystems has unfolded a deeper understanding of networks, collective phenomena, and signal processing. Cavity optomechanical devices have played an important role in this scenario, with the perspective of bridging optical and radio frequencies through nonlinear classical and quantum synchronization concepts. In its simplest form, synchronization occurs when an oscillator is entrained by a signal with frequency nearby the oscillator’s tone, and becomes increasingly challenging as their frequency detuning increases. Here, we experimentally demonstrate entrainment of a silicon-nitride optomechanical oscillator driven up to the fourth harmonic of its 32 MHz fundamental frequency. Exploring this effect, we also experimentally demonstrate a purely optomechanical RF frequency divider, where we performed frequency division up to a 4:1 ratio, i.e., from 128 MHz to 32 MHz. Further developments could harness these effects towards frequency synthesizers, phase-sensitive amplification and nonlinear sensing.


2021 ◽  
Author(s):  
Christopher Mayero ◽  
Patrick Owiny

Abstract We present a scheme for generating polaritons which are maximally entangled qubit states in the Jaynes-Cummings interaction mechanism. Considering a specific case of an atom initially in an excited state entering a cavity mode initially in vacuum state and in a non-resonant atom-field Jaynes-Cummings interaction, we demonstrate using graphical representation on the Bloch sphere that an increase in frequency detuning leads to an increase in Rabi oscillations. Analysis of the dynamical behaviour of quantum entanglement in the general Jaynes-Cummings atom-field interactions measured by concurrence show that frequency detuning and photon number parameters are vital in enhancing entanglement.


Radiotekhnika ◽  
2021 ◽  
pp. 113-117
Author(s):  
V.V. Rapin

The paper considers the use of recently appeared analytical methods for solving shortened equations of a synchronized oscillator. These are a quasi-small parameter method and a combined small parameter method. Both methods use the classic small parameter method. A peculiarity of their application is that in this case they are used for solving nonlinear differential equations that do not contain a small parameter. The difference between the above methods is in obtaining the equations of the first approximation. In the quasi-small parameter method, they are linear differential equations obtained by linearizing the original nonlinear differential equations in the area of the zero frequency detuning. In the combined small parameter method, the equations of the first approximation are obtained by approximating the original nonlinear differential equations. Of course, a number of transformations of these equations were made for this. The approximation made it possible to obtain better representation of the original nonlinear differential equations by means of linear differential equations. This representation provided a smaller error, which in both cases was presented as a discrepancy. The discrepancy does not allow obtaining a relative error and investigating its peculiarity. A study of the relative error of the quasi-small parameter method shows that this error is a continuous function of the frequency detuning with a zero value for a zero frequency detuning. A function representing relative error has a gap at zero frequency detuning for the combined small parameter method. However, this kind of gap can be eliminated by additional function definition.


2021 ◽  
Author(s):  
Halima Benzehoua ◽  
Latifa Dalil-Essakali ◽  
Abdelmajid Belafhal

Abstract In this paper, we discuss the quality of holograms based on the calculation of the modulation depth. It’s shown that the terahertz (THz) pulsed vortex beams play a vital role in holography filed, where two lasers with frequency difference have used. The THz vortex beams give new regions of larger frequency detuning and an important value of the modulation depth and fringe contrast (MDFC ratio) for obtaining the best holograms contrary to the Gaussian beams for which the best holograms are realized for small frequency detuning. The particular cases such as, Gaussian beam and single cycle pulses are deduced from our result. Numerical simulations are also presented to study the dependence of the MDFC ratio on the frequency detuning for THz vortex beams and Gaussian beams. This research could be beneficial in holographic interferometry, and it will firmly establish as a tool for scientific and engineering studies.


2021 ◽  
Author(s):  
Caique Rodrigues ◽  
Cauê Kersul ◽  
André Primo ◽  
Michal Lipson ◽  
Thiago Alegre ◽  
...  

Abstract Experimental exploration of synchronization in scalable oscillator micro systems has unfolded a deeper understanding of networks, collective phenomena, and signal processing. Cavity optomechanical devices have played an important role in this scenario, with the perspective of bridging optical and radio frequencies through nonlinear classical and quantum synchronization concepts. In its simplest form, synchronization occurs when an oscillator is entrained by a signal nearby the oscillator's tone, and becomes increasingly challenging as the frequency detuning increases. Here, we experimentally demonstrate entrainment of a silicon-nitride optomechanical oscillator driven several octaves away from its 32 MHz fundamental frequency. Exploring this effect, we perform a 4:1 frequency division from 128 MHz to 32 MHz. Further developments could harness these effects towards frequency synthesizers, phase-sensitive amplification and nonlinear sensing.


Photonics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 130
Author(s):  
Hyo-Sang Jeong ◽  
Jun-Hyung Cho ◽  
Hyuk-Kee Sung

The performance of optical M-level (multi-level) amplitude shift keying (ASK) modulation is improved by directly using modulated optically injection-locked (OIL) semiconductor lasers. The direct modulation performance of free-running and OIL semiconductor lasers is evaluated and compared theoretically based on coupled-rate equation. We have found that OIL semiconductor lasers can significantly improve the modulation performance in terms of the signal eye opening and Q-factor. Additionally, we found that the Q-factor increases even more in the negative frequency detuning range due to its dependence on the locking parameters.


2021 ◽  
Author(s):  
Yunfa Zhang ◽  
Xianren Kong ◽  
Chengfei Yue ◽  
Huai Xiong

Abstract Nonlinear energy sink (NES) refers to a typical passive vibration device connected to linear or weakly nonlinear structures for vibration absorption and mitigation. This study investigates the dynamics of 1-dof and 2-dof NES with nonlinear damping and combined stiffness connected to a linear oscillator. For the system of 1-dof NES, a truncation damping and failure frequency are revealed through bifurcation analysis using the complex variable averaging method. The frequency detuning interval for the existence of the strongly modulated response (SMR) is also reported . For the system of 2-dof NES, it is reported in a similar bifurcation analysis that the mass distribution between NES affects the maximum value of saddle-node bifurcation. To obtain the periodic solution of the 2-dof NES system with the consideration of frequency detuning, the incremental harmonic balance method (IHB) and Floquet theory are employed. The corresponding response regime is obtained by Poincare mapping, it shows that the responses of the linear oscillator and 2-dof NES are not always consistent, and 2-dof NES can generate extra SMR than 1-dof NES. Finally, the vibration suppression effect of the proposed NES with nonlinear damping and combined stiffness is analyzed and verified by the energy spectrum, and it also shows that the 2-dof NES system demonstrates better performance.


2021 ◽  
Author(s):  
Halima Benzehoua ◽  
Latifa Dalil-Essakali ◽  
Abdelmajid Belafhal

Abstract On the basis of the modulation depth in the interference and holographic processes, we discuss in this paper the quality of holograms generated by some femtosecond laser pulses of two different colors. The modulation depth in terms of the fringe contrast (MDFC ratio) of Higher-order sh- and ch-Gaussian temporal profiles (shnGTP and chnGTP) are investigated in detail. It’s shown that, when we use two lasers having a very large frequency detuning, the shnGTP exhibit more precise results than the Gaussian beams for holography. shnGTP give new areas of frequency detuning to realize the very significant value of the MDFC ratio for obtaining better holograms, which is impossible with Gaussian beams. It also permits flexibility in the variable frequency difference and pulse duration for good quality holograms, and in the case of the chnGTP, null regions develop and frequency bands are observed favoring the formation of the holograms. The numerical simulations are presented to illustrate and discuss the influence of the frequency detuning, the beam order and the controller parameter of the waves on the modulation depths. The propose theory will be a good basis for the development of some new experiments on the holographic interferometry and it will certainly be very useful for the specialists of the studied femtosecond laser pulses.


Sign in / Sign up

Export Citation Format

Share Document