Topology optimization design for buckling analysis related to the size effect

2021 ◽  
pp. 108128652110666
Author(s):  
Ning Gan ◽  
Qianxuan Wang

Owing to the excellent performance of microstructures or nanomaterials with well-designed topological configuration, the characteristic scale of structural design is gradually shifting from macroscopic to nanoscale or microscale structural design. However, the size effect that emerges from the small-scale structures may not be explained effectively with the hypothesis of classical mechanics owing to the lack of microscopic parameters in the classical constitutive model. In addition, slender beams within such small-scale structures are prone to buckling failure, which puts forward additional requirements for the stability design of the structure except for the overall compliance of the structure. Therefore, a topology optimization framework combining the modified couple stress theory with the solid isotropic material penalization (SIMP) model is constructed to illustrate the size effect on topology optimization. Numerical results show that the size effect affects the compliance, buckling performance, and topological configurations of the evolutionary structures.

2020 ◽  
pp. 107754632096398
Author(s):  
Bin Xu ◽  
Yuanhao Liu ◽  
Jingdan Xue ◽  
Yonghui Zhao

A two-scale concurrent topology optimization method based on the couple stress theory is proposed for maximizing structural fundamental eigenfrequency. Because of the fact that the classical mechanics theory cannot reveal the size effect because of neglecting the influence of microstructure, the theory of couple stress including the microscopic properties of materials can be used to describe the size effect in deformations. On the foundation of the couple stress theory, the two-scale optimization model for finding optimal configurations of macrostructures and their periodic composite material microstructures is built. And the fundamental eigenfrequency of the macrostructure is maximized. The effective macroscopic couple stress constitutive constants of macrostructures are calculated by the representative volume element method. And a modified solid isotropic material with a penalization model is used to effectively avoid the localized mode. The optimization algorithm based on the bidirectional evolutionary structural optimization method is proposed. The optimal results of numerical examples show that the optimal topologies and natural frequencies obtained by the couple stress theory may differ significantly from those obtained by the typical Cauchy theory. It is obvious that couple stress theory can effectively describe the size effect in topology optimization.


2000 ◽  
Vol 179 ◽  
pp. 403-406
Author(s):  
M. Karovska ◽  
B. Wood ◽  
J. Chen ◽  
J. Cook ◽  
R. Howard

AbstractWe applied advanced image enhancement techniques to explore in detail the characteristics of the small-scale structures and/or the low contrast structures in several Coronal Mass Ejections (CMEs) observed by SOHO. We highlight here the results from our studies of the morphology and dynamical evolution of CME structures in the solar corona using two instruments on board SOHO: LASCO and EIT.


2007 ◽  
Vol 3 (S247) ◽  
pp. 152-157 ◽  
Author(s):  
Oddbjørn Engvold

AbstractSeismology has become a powerful tool in studies of the magnetic structure of solar prominences and filaments. Reversely, analytical and numerical models are guided by available information about the spatial and thermodynamical structure of these enigmatic structures. The present invited paper reviews recent observational results on oscillations and waves as well as details about small-scale structures and dynamics of prominences and filaments.


2009 ◽  
Vol 399 (1) ◽  
pp. 195-208 ◽  
Author(s):  
Jacco Th. van Loon ◽  
Keith T. Smith ◽  
Iain McDonald ◽  
Peter J. Sarre ◽  
Stephen J. Fossey ◽  
...  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fei Zhao ◽  
Xueyao Zheng ◽  
Shichen Zhou ◽  
Bo Zhou ◽  
Shifeng Xue

PurposeIn this paper, a three-dimensional size-dependent constitutive model of SMP Timoshenko micro-beam is developed to describe the micromechanical properties.Design/methodology/approachAccording to the Hamilton's principle, the equilibrium equations and boundary conditions of the model are established and according to the modified couple stress theory, the model is available to capturing the size effect because of the material length scale parameter. Based on the model, the simply supported beam was taken for example to be solved and simulated.FindingsResults show that the size effect of SMP micro-beam is more obvious when the dimensionless beam height is similar or the larger of the value of loading time. The rigidity and strength of the SMP beam decrease with the increasing of the dimensionless beam height or the loading time. The viscous property of SMP micro-beam plays a more important role with the larger dimensionless beam height. And the smaller the dimensionless beam height is, the more obvious the shape memory effect of the SMP micro-beam is.Originality/valueThis work implies prediction of size-dependent thermo-mechanical behaviors of the SMP micro-beam and will provide a theoretical basis for design SMP microstructures in the field of micro/nanomechanics.


Sign in / Sign up

Export Citation Format

Share Document