Finite and boundary element method contact mechanics on rough, artificial hip joints

Author(s):  
S Ilincic ◽  
N Tungkunagorn ◽  
A Vernes ◽  
G Vorlaufer ◽  
P A Fotiu ◽  
...  

An extremely small roughness of constant height magnitude is considered on the femoral head of an artificial hip joint in order to determine the consequences of various regular shapes and clearances on the mechanical performance of this hip prosthesis via a properly coupled finite and boundary element method. In addition, different material combinations typical for widely used hard-on-hard and hard-on-soft hip joint replacements are also taken into account. By analysing the calculated pressure distribution and contact area between the femoral head and the acetabular cup in frictionless dry contact irrespective of material pairings in hip joints, it is shown that both the wavelength of roughness and the clearance significantly affect these mechanical quantities and accordingly too loose or too tight hip implants have to be avoided. Finally, in terms of all numerical findings a suitable optimal design of hip implants is also discussed.

2021 ◽  
Vol 328 ◽  
pp. 07014
Author(s):  
Wahyu Dwi Lestari ◽  
Luluk Edahwati ◽  
Wiliandi Saputro ◽  
Ahmad Khairul Faizin ◽  
Radissa Dzaky Issafira ◽  
...  

A common problem with artificial hip replacements is increased wear of the material in contact. Materials that are in contact result in contact pressure caused by the patient's daily activities so that it triggers wear. This study adopts a finite element method (FEM) to predict wear of the artificial hip joint, by studying the behavior of a hip joint prosthesis that has clearance under a certain load. The aim of this study was to observe contact as a function of clearance and body weight. The modeling uses metal as femoral head and polycarbonate urethane (PCU) material as the acetabular cup. Contact modeling as a hard material in contact with a deformable material. Four variations of clearance (0.001, 0.005, 0.01, 0.016) and three variations of body weight (500N, 700N, and 1000N) were used in this study. The simulation results show that the lower the distance and weight, the lower the contact pressure.


1995 ◽  
Vol 5 (6) ◽  
pp. 621-638 ◽  
Author(s):  
J. H. Hilbing ◽  
Stephen D. Heister ◽  
C. A. Spangler

1993 ◽  
Vol 21 (2) ◽  
pp. 66-90 ◽  
Author(s):  
Y. Nakajima ◽  
Y. Inoue ◽  
H. Ogawa

Abstract Road traffic noise needs to be reduced, because traffic volume is increasing every year. The noise generated from a tire is becoming one of the dominant sources in the total traffic noise because the engine noise is constantly being reduced by the vehicle manufacturers. Although the acoustic intensity measurement technology has been enhanced by the recent developments in digital measurement techniques, repetitive measurements are necessary to find effective ways for noise control. Hence, a simulation method to predict generated noise is required to replace the time-consuming experiments. The boundary element method (BEM) is applied to predict the acoustic radiation caused by the vibration of a tire sidewall and a tire noise prediction system is developed. The BEM requires the geometry and the modal characteristics of a tire which are provided by an experiment or the finite element method (FEM). Since the finite element procedure is applied to the prediction of modal characteristics in a tire noise prediction system, the acoustic pressure can be predicted without any measurements. Furthermore, the acoustic contribution analysis obtained from the post-processing of the predicted results is very helpful to know where and how the design change affects the acoustic radiation. The predictability of this system is verified by measurements and the acoustic contribution analysis is applied to tire noise control.


AIAA Journal ◽  
1997 ◽  
Vol 35 ◽  
pp. 1080-1081
Author(s):  
Giuseppe Davi ◽  
Rosario M. A. Maretta ◽  
Alberto Milazzo

Sign in / Sign up

Export Citation Format

Share Document