Nonlinear dynamic coefficients prediction of journal bearings using partial derivative method

Author(s):  
Wang Weimin ◽  
Yang Lihua ◽  
Wang Tiejun ◽  
Yu Lie
Author(s):  
Mohammad Hojjati ◽  
Seyed Younes Farzanmehr ◽  
H. M. Navaz ◽  
Hassan Haddadpour

In this paper, a modified partial derivative method is developed to predict the linear and nonlinear dynamic coefficients of tilting-pad journal bearings with journal and pad perturbation. To this end, Reynolds equation and its boundary conditions along with equilibrium equations of the pad are used. Finite difference, partial derivative method, and perturbation technique have been employed simultaneously for solving these equations. The accuracy of the results is investigated by comparing the linear dynamic coefficients of three types of tilting-pad journal bearings with those published the literature. It is shown that the nonlinear dynamic coefficients depend on Sommerfeld number, eccentricity ratio, and length to diameter ratio. Similar to the case of linear dynamic coefficients of TPJB, it is observed that the eccentricity ratio effects on nonlinear dynamic coefficients are more notable when the eccentricity ratio is higher than 0.8 or less than 0.2.


Author(s):  
Lihua Yang ◽  
Weimin Wang ◽  
Lie Yu

In this paper, the analytic solutions of oil-film forces in infinite-short cylindrical journal bearing are calculated by solving its corresponding Reynolds equation. On this base, the linear and nonlinear dynamic coefficients of the bearing are predicted. By comparing the dynamic oil-film forces approximately represented by dynamic coefficients with the analytic solutions, the accuracy of this representation model is investigated. The results show that more orders of dynamic coefficients are included in representation model, the obtained approximate oil-film forces are more close to their analytic solutions. This can be a reference to illustrate the feasibility and applicability of representing oil-film forces by applying the dynamic coefficients of bearings.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Mohammad Miraskari ◽  
Farzad Hemmati ◽  
Mohamed S. Gadala

The nonlinear stability of a flexible rotor-bearing system supported on finite length journal bearings is addressed. A perturbation method of the Reynolds lubrication equation is presented to calculate the bearing nonlinear dynamic coefficients, a treatment that is suitable to any bearing geometry. A mathematical model, nonlinear coefficient-based model, is proposed for the flexible rotor-bearing system for which the journal forces are represented through linear and nonlinear dynamic coefficients. The proposed model is then used for nonlinear stability analysis in the system. A shooting method is implemented to find the periodic solutions due to Hopf bifurcations. Monodromy matrix associated to the periodic solution is found at any operating point as a by-product of the shooting method. The eigenvalue analysis of the Monodromy matrix is then carried out to assess the bifurcation types and directions due to Hopf bifurcation in the system for speeds beyond the threshold speed of instability. Results show that models with finite coefficients have remarkably better agreement with experiments in identifying the boundary between bifurcation regions. Unbalance trajectories of the nonlinear system are shown to be capable of capturing sub- and super-harmonics which are absent in the linear model trajectories.


1989 ◽  
Vol 111 (3) ◽  
pp. 426-429 ◽  
Author(s):  
T. Kato ◽  
Y. Hori

A computer program for calculating dynamic coefficients of journal bearings is necessary in designing fluid film journal bearings and an accuracy of the program is sometimes checked by the relation that the cross terms of linear damping coefficients of journal bearings are equal to each other, namely “Cxy = Cyx”. However, the condition for this relation has not been clear. This paper shows that the relation “Cxy = Cyx” holds in any type of finite width journal bearing when these are calculated under the following condition: (I) The governing Reynolds equation is linear in pressure or regarded as linear in numerical calculations; (II) Film thickness is given by h = c (1 + κcosθ); and (III) Boundary condition is homogeneous such as p=0 or dp/dn=0, where n denotes a normal to the boundary.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Mohammad Miraskari ◽  
Farzad Hemmati ◽  
Mohamed S. Gadala

To determine the bifurcation types in a rotor-bearing system, it is required to find higher order derivatives of the bearing forces with respect to journal velocity and position. As closed-form expressions for journal bearing force are not generally available, Hopf bifurcation studies of rotor-bearing systems have been limited to simple geometries and cavitation models. To solve this problem, an alternative nonlinear coefficient-based method for representing the bearing force is presented in this study. A flexible rotor-bearing system is presented for which bearing force is modeled with linear and nonlinear dynamic coefficients. The proposed nonlinear coefficient-based model was found to be successful in predicting the bifurcation types of the system as well as predicting the system dynamics and trajectories at spin speeds below and above the threshold speed of instability.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Hui-Hui Feng ◽  
Chun-Dong Xu ◽  
Jie Wan

The water-lubricated bearings have been paid attention for their advantages to reduce the power loss and temperature rise and increase load capacity at high speed. To fully study the complete dynamic coefficients of two water-lubricated, hydrostatic journal bearings used to support a rigid rotor, a four-degree-of-freedom model considering the translational and tilting motion is presented. The effects of tilting ratio, rotary speed, and eccentricity ratio on the static and dynamic performances of the bearings are investigated. The bulk turbulent Reynolds equation is adopted. The finite difference method and a linear perturbation method are used to calculate the zeroth- and first-order pressure fields to obtain the static and dynamic coefficients. The results suggest that when the tilting ratio is smaller than 0.4 or the eccentricity ratio is smaller than 0.1, the static and dynamic characteristics are relatively insensitive to the tilting and eccentricity ratios; however, for larger tilting or eccentricity ratios, the tilting and eccentric effects should be fully considered. Meanwhile, the rotary speed significantly affects the performance of the hydrostatic, water-lubricated bearings.


Sign in / Sign up

Export Citation Format

Share Document