scholarly journals The loss of macular ganglion cells begins from the early stages of disease and correlates with brain atrophy in multiple sclerosis patients

2017 ◽  
Vol 25 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Anna M Pietroboni ◽  
Laura Dell’Arti ◽  
Michela Caprioli ◽  
Marta Scarioni ◽  
Tiziana Carandini ◽  
...  

Background: The importance of neurodegeneration in multiple sclerosis (MS) is increasingly well recognized. Objectives: To evaluate retinal pathology using optical coherence tomography (OCT) and to investigate possible associations between retinal layers’ thickness and specific patterns of gray matter volume in patients with a new diagnosis of MS. Methods: A total of 31 patients underwent OCT scans and brain magnetic resonance imaging. In total, 30 controls underwent the same OCT procedure. The association between focal cortical volume and OCT measurements was investigated with voxel-based morphometry (VBM). Results: Compared to controls, patients’ macular retinal nerve fiber layer (mRNFL), macular ganglion cell layer (mGCL), macular inner plexiform layer (mIPL), and macular ganglion cell-inner plexiform layer (mGCIPL) thickness were significantly reduced ( p = 0.0009, p = 0.0003, p = 0.0049, and p = 0.0007, respectively). Peripapillary RNFL (pRNFL) and temporal sector pRNFL (T-pRNFL) did not show any significant changes, although there was a trend toward T-pRNFL thinning ( p = 0.0254). VBM analysis showed that mGCIPL and pRNFL were significantly correlated with the volume reduction of occipital-parietal cortex ( p < 0.005). Conclusion: mRNFL, mGCL, and mIPL are significantly reduced in MS patients without concomitant pRNFL thinning. These retinal changes show a significant association with cortical regions that are known to be important for visuospatial performance.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Tsutomu Yamashita ◽  
Atsushi Miki ◽  
Katsutoshi Goto ◽  
Syunsuke Araki ◽  
Go Takizawa ◽  
...  

Purpose. To report a reduction in macular ganglion cell layer and inner plexiform layer (GCL+IPL) thickness and circumpapillary retinal nerve fiber layer (cpRNFL) thickness using spectral-domain optical coherence tomography in patients with homonymous hemianopia due to posterior cerebral artery (PCA) stroke.Methods. Seven patients with PCA stroke were examined using Cirrus high-definition-OCT. The GCL+IPL thicknesses were divided into the hemianopic and unaffected sides. The relationship between the time after stroke and the GCL+IPL thicknesses in the hemianopic side was evaluated.Results. The average thicknesses of the GCL+IPL were 64.6 and 82.0 μm on the hemianopic and unaffected sides, respectively, and the measurement was significantly thinner on the former side (p=0.018). A regression analysis revealed a negative linear relationship (R2=0.574,p=0.049) between the time after stoke and the GCL+IPL thicknesses on the hemianopic side. The supratemporal and inferotemporal cpRNFL thicknesses in the eyes ipsilateral to the stroke showed a significant reduction.Conclusion. Our findings confirmed our previous observations that the degeneration of retinal ganglion cells can occur after PCA stroke. GCL+IPL thinning was demonstrated in the hemiretinae corresponding to the affected hemifields. Also, it is suggested that the retinal changes observed are progressive.


2021 ◽  
Vol 8 (5) ◽  
pp. e1051
Author(s):  
Ting-Yi Lin ◽  
Viktoriya Vitkova ◽  
Susanna Asseyer ◽  
Ivette Martorell Serra ◽  
Seyedamirhosein Motamedi ◽  
...  

ObjectiveTo investigate the association of combined serum neurofilament light chain (sNfL) and retinal optical coherence tomography (OCT) measurements with future disease activity in patients with early multiple sclerosis (MS).MethodsWe analyzed sNfL by single molecule array technology and performed OCT measurements in a prospective cohort of 78 patients with clinically isolated syndrome and early relapsing-remitting MS with a median (interquartile range) follow-up of 23.9 (23.3–24.7) months. Patients were grouped into those with abnormal or normal sNfL levels, defined as sNfL ≥/<80th percentile of age-corrected reference values. Likewise, patients were grouped by a median split into those with thin or thick ganglion cell and inner plexiform layer (GCIP), peripapillary retinal nerve fiber layer, and inner nuclear layer in nonoptic neuritis eyes. Outcome parameters were violation of no evidence of disease activity (NEDA-3) criteria or its components.ResultsPatients with abnormal baseline sNfL had a higher risk of violating NEDA-3 (hazard ratio [HR] 2.28, 95% CI 1.27–4.09, p = 0.006) and developing a new brain lesion (HR 2.47, 95% CI 1.30–4.69, p = 0.006), but not for a new relapse (HR 2.21, 95% CI 0.97–5.03, p = 0.058). Patients with both abnormal sNfL and thin GCIP had an even higher risk for NEDA-3 violation (HR 3.61, 95% CI 1.77–7.36, p = 4.2e−4), new brain lesion (HR 3.19, 95% CI 1.51–6.76, p = 0.002), and new relapse (HR 5.38, 95% CI 1.61–17.98, p = 0.006) than patients with abnormal sNfL alone.ConclusionsIn patients with early MS, the presence of both abnormal sNfL and thin GCIP is a stronger risk factor for future disease activity than the presence of each parameter alone.


2014 ◽  
Vol 20 (10) ◽  
pp. 1331-1341 ◽  
Author(s):  
Divya Narayanan ◽  
Han Cheng ◽  
Karlie N Bonem ◽  
Roberto Saenz ◽  
Rosa A Tang ◽  
...  

Background: Neurodegeneration plays an important role in permanent disability in multiple sclerosis (MS). Objective: The objective of this paper is to determine whether progressive neurodegeneration occurs in MS eyes without clinically evident inflammation. Methods: Retinal nerve fiver layer thickness (RNFLT) and ganglion cell-inner plexiform layer thickness (GCIPT) were measured using Cirrus optical coherence tomography (OCT) in 133 relapsing–remitting MS (RRMS) patients (149 non-optic neuritis (ON), 97 ON eyes, last ON ≥6 months). Ninety-three patients were scanned at two visits. Percentages of abnormal GCIPT vs RNFLT (<5% of machine norms) in cross-sectional data were compared. Relations between RNFLT/GCIPT and MS duration (cross-sectional) and follow-up time (longitudinal) were assessed. Results: GCIPT was abnormal in more eyes than RNFLT (27% vs 16% p = 0.004 in non-ON, 82% vs 72% p = 0.007 in ON). RNFLT and GCIPT decreased with MS duration by −0.49 µm/yr ( p = 0.0001) and −0.36 ( p = 0.005) for non-ON; −0.52 ( p = 0.003) and −0.41 ( p = 0.007) for ON. RNFLT and GCIPT decreased with follow-up time by −1.49 µm/yr ( p < 0.0001) and −0.53 ( p = 0.004) for non-ON, −1.27 ( p = 0.002) and −0.49 ( p = 0.04) for ON. Conclusions: In RRMS eyes without clinically evident inflammation, progressive loss of RNFLT and GCIPT occurred, supporting the need for neuroprotection in addition to suppression of autoimmune responses and inflammation.


2001 ◽  
Vol 18 (4) ◽  
pp. 559-570 ◽  
Author(s):  
B.E. REESE ◽  
M.A. RAVEN ◽  
K.A. GIANNOTTI ◽  
P.T. JOHNSON

The present study has examined the emergence of cholinergic stratification within the developing inner plexiform layer (IPL), and the effect of ablating the cholinergic amacrine cells on the formation of other stratifications within the IPL. The population of cholinergic amacrine cells in the ferret's retina was identified as early as the day of birth, but their processes did not form discrete strata until the end of the first postnatal week. As development proceeded over the next five postnatal weeks, so the positioning of the cholinergic strata shifted within the IPL toward the outer border, indicative of the greater ingrowth and elaboration of processes within the innermost parts of the IPL. To examine whether these cholinergic strata play an instructive role upon the development of other stratifications which form within the IPL, one-week-old ferrets were treated with l-glutamate in an attempt to ablate the population of cholinergic amacrine cells. Such treatment was shown to be successful, eliminating all of the cholinergic amacrine cells as well as the alpha retinal ganglion cells in the central retina. The remaining ganglion cell classes as well as a few other retinal cell types were partially reduced, while other cell types were not affected, and neither retinal histology nor areal growth was compromised in these ferrets. Despite this early loss of the cholinergic amacrine cells, which are eliminated within 24 h, other stratifications within the IPL formed normally, as they do following early elimination of the entire ganglion cell population. While these cholinergic amacrine cells are present well before other cell types have differentiated, apparently neither they, nor the ganglion cells, play a role in determining the depth of stratification for other retinal cell types.


Sign in / Sign up

Export Citation Format

Share Document