MRI correlates of clinical disability and hand-motor performance in multiple sclerosis phenotypes

2020 ◽  
pp. 135245852095835
Author(s):  
Claudio Cordani ◽  
Milagros Hidalgo de la Cruz ◽  
Alessandro Meani ◽  
Paola Valsasina ◽  
Federica Esposito ◽  
...  

Background: Hand-motor impairment affects a large proportion of multiple sclerosis (MS) patients; however, its substrates are still poorly understood. Objectives: To investigate the association between global disability, hand-motor impairment, and alterations in motor-relevant structural and functional magnetic resonance imaging (MRI) networks in MS patients with different clinical phenotypes. Methods: One hundred thirty-four healthy controls (HC) and 364 MS patients (250 relapsing-remitting MS (RRMS) and 114 progressive MS (PMS)) underwent Expanded Disability Status Scale (EDSS) rating, nine-hole peg test (9HPT), and electronic finger tapping rate (EFTR). Structural and resting state (RS) functional MRI scans were used to perform a source-based morphometry on gray matter (GM) components, to analyze white matter (WM) tract diffusivity indices and to perform a RS seed-based approach from the primary motor cortex involved in hand movement (hand-motor cortex). Random forest analyses identified the predictors of clinical impairment. Result: In RRMS, global measures of atrophy and lesions together with measures of structural damage of motor-related regions predicted EDSS (out-of-bag (OOB)- R2 = 0.19, p-range = <0.001–0.04), z9HPT (right: OOB- R2 = 0.14; left: OOB- R2 = 0.24, p-range = <0.001–0.03). No RS functional connectivity (FC) abnormalities were identified in RRMS models. In PMS, cerebellar and sensorimotor regions atrophy, cerebellar peduncles integrity and increased RS FC between left hand-motor cortex and right inferior frontal gyrus predicted EDSS (OBB- R2 = 0.16, p-range = 0.02–0.04). Conclusion: In RRMS, only measures of structural damage contribute to explain motor impairment, whereas both structural and functional MRI measures predict clinical disability in PMS. A multiparametric MRI approach could be relevant to investigate hand-motor impairment in different MS phenotypes.

2020 ◽  
Vol 41 (1) ◽  
pp. 182-193 ◽  
Author(s):  
Kathryn L West ◽  
Dinesh K Sivakolundu ◽  
Mark D Zuppichini ◽  
Monroe P Turner ◽  
Jeffrey S Spence ◽  
...  

The neural mechanisms underlying motor impairment in multiple sclerosis (MS) remain unknown. Motor cortex dysfunction is implicated in blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) studies, but the role of neural–vascular coupling underlying BOLD changes remains unknown. We sought to independently measure the physiologic factors (i.e., cerebral blood flow (ΔCBF), cerebral metabolic rate of oxygen (ΔCMRO2), and flow–metabolism coupling (ΔCBF/ΔCMRO2), utilizing dual-echo calibrated fMRI (cfMRI) during a bilateral finger-tapping task. We utilized cfMRI to measure physiologic responses in 17 healthy volunteers and 32 MS patients (MSP) with and without motor impairment during a thumb-button-press task in thumb-related (task-central) and surrounding primary motor cortex (task-surround) regions of interest (ROIs). We observed significant ΔCBF and ΔCMRO2 increases in all MSP compared to healthy volunteers in the task-central ROI and increased flow–metabolism coupling (ΔCBF/ΔCMRO2) in the MSP without motor impairment. In the task-surround ROI, we observed decreases in ΔCBF and ΔCMRO2 in MSP with motor impairment. Additionally, ΔCBF and ΔCMRO2 responses in the task-surround ROI were associated with motor function and white matter damage in MSP. These results suggest an important role for task-surround recruitment in the primary motor cortex to maintain motor dexterity and its dependence on intact white matter microstructure and neural–vascular coupling.


Author(s):  
Daniel L. Keene ◽  
Janet Olds ◽  
William J. Logan

AbstractRationale:Double cortex syndrome is a malformation in which there is a band of subcortical heterotopic grey matter separated from the cortex by white matter. The functional activity of the heterotopic neurons is unclear.Patient:A 13-year-old female was evaluated for seizures. The EEG showed bifrontal spike wave disturbance. Band heterotopia, in association with mild reduction of sulcation of the cerebral hemispheres, was found on MRI. Psychological assessment indicated the presence of variable cognitive abilities, with verbal IQ [82] generally better than nonverbal IQ [59], and specific difficulties in language comprehension and mathematics.Method:Functional MRI was used to localize the areas of language and motor activation. The language activation paradigm was a visual verb generation task with a visual fixation baseline. The motor paradigm consisted of alternating blocks of sequential finger tapping and rest. Coronal functional and anatomical images were obtained.Results:The motor paradigm produced activation of the primary motor cortex, the band heterotopia and the supplementary motor cortex. The language paradigm produced activation of the left inferior frontal gyrus and left supplementary motor area, but not of the band heterotopia.Conclusions:The activation of heterotopic grey matter during a motor task demonstrates a hemodynamic association with motor activity and suggests that this tissue may be functional. Such association was not seen with the language task. We speculate that later maturing functions such as language are restricted in their development to the normal situated superficial cortex in our patient.


2021 ◽  
Vol 429 ◽  
pp. 117667
Author(s):  
Claudio Cordani ◽  
Paola Valsasina ◽  
Alessandro Meani ◽  
Elisabetta Pagani ◽  
Tetsu Morozumi ◽  
...  

Stroke ◽  
2021 ◽  
Author(s):  
Robert Schulz ◽  
Marlene Bönstrup ◽  
Stephanie Guder ◽  
Jingchun Liu ◽  
Benedikt Frey ◽  
...  

Background and Purpose: Cortical beta oscillations are reported to serve as robust measures of the integrity of the human motor system. Their alterations after stroke, such as reduced movement-related beta desynchronization in the primary motor cortex, have been repeatedly related to the level of impairment. However, there is only little data whether such measures of brain function might directly relate to structural brain changes after stroke. Methods: This multimodal study investigated 18 well-recovered patients with stroke (mean age 65 years, 12 males) by means of task-related EEG and diffusion-weighted structural MRI 3 months after stroke. Beta power at rest and movement-related beta desynchronization was assessed in 3 key motor areas of the ipsilesional hemisphere that are the primary motor cortex (M1), the ventral premotor area and the supplementary motor area. Template trajectories of corticospinal tracts (CST) originating from M1, premotor cortex, and supplementary motor area were used to quantify the microstructural state of CST subcomponents. Linear mixed-effects analyses were used to relate tract-related mean fractional anisotropy to EEG measures. Results: In the present cohort, we detected statistically significant reductions in ipsilesional CST fractional anisotropy but no alterations in EEG measures when compared with healthy controls. However, in patients with stroke, there was a significant association between both beta power at rest ( P =0.002) and movement-related beta desynchronization ( P =0.003) in M1 and fractional anisotropy of the CST specifically originating from M1. Similar structure-function relationships were neither evident for ventral premotor area and supplementary motor area, particularly with respect to their CST subcomponents originating from premotor cortex and supplementary motor area, in patients with stroke nor in controls. Conclusions: These data suggest there might be a link connecting microstructure of the CST originating from M1 pyramidal neurons and beta oscillatory activity, measures which have already been related to motor impairment in patients with stroke by previous reports.


Author(s):  
Noemi Piramide ◽  
Elisabetta Sarasso ◽  
Aleksandra Tomic ◽  
Elisa Canu ◽  
Igor N. Petrovic ◽  
...  

2003 ◽  
Vol 89 (2) ◽  
pp. 1136-1142 ◽  
Author(s):  
Yoram Ben-Shaul ◽  
Eran Stark ◽  
Itay Asher ◽  
Rotem Drori ◽  
Zoltan Nadasdy ◽  
...  

Although previous studies have shown that activity of neurons in the motor cortex is related to various movement parameters, including the direction of movement, the spatial pattern by which these parameters are represented is still unresolved. The current work was designed to study the pattern of representation of the preferred direction (PD) of hand movement over the cortical surface. By studying pairwise PD differences, and by applying a novel implementation of the circular variance during preparation and movement periods in the context of a center-out task, we demonstrate a nonrandom distribution of PDs over the premotor and motor cortical surface of two monkeys. Our analysis shows that, whereas PDs of units recorded by nonadjacent electrodes are not more similar than expected by chance, PDs of units recorded by adjacent electrodes are. PDs of units recorded by a single electrode display the greatest similarity. Comparison of PD distributions during preparation and movement reveals that PDs of nearby units tend to be more similar during the preparation period. However, even for pairs of units recorded by a single electrode, the mean PD difference is typically large (45° and 75° during preparation and movement, respectively), so that a strictly modular representation of hand movement direction over the cortical surface is not supported by our data.


2005 ◽  
Vol 11 (3) ◽  
pp. 316-321 ◽  
Author(s):  
J Liepert ◽  
D Mingers ◽  
C Heesen ◽  
T Bäumer ◽  
C Weiller

We investigated electrophysiological correlates of fatigue in patients with multiple sclerosis (MS). Transcranial magnetic stimulation (TMS) was used to explore motor excitability in three groups of subjects: MS patients with fatigue (MS-F), MS patients without fatigue (MS-NF) and healthy control subjects. All participants had to perform a fatiguing hand-grip exercise. TMS was performed prior to and after the exercise. Prior to the motor task, MS-F patients had less inhibition in the primary motor cortex compared to both other groups. Postexercise, intracortical inhibition was still reduced in the MS-F patients compared to the MS-NF patients. In MS-F patients the postexercise time interval for normalization of the motor threshold was correlated with the fatigue severity. We conclude that MS patients with fatigue have an impairment of inhibitory circuits in their primary motor cortex. The results also indicate that fatigue severity is associated with an exercise-induced reduction of membrane excitability.


2019 ◽  
Vol 33 (2) ◽  
pp. 130-140 ◽  
Author(s):  
Ronan A. Mooney ◽  
Suzanne J. Ackerley ◽  
Deshan K. Rajeswaran ◽  
John Cirillo ◽  
P. Alan Barber ◽  
...  

Background. Stroke is a leading cause of adult disability owing largely to motor impairment and loss of function. After stroke, there may be abnormalities in γ-aminobutyric acid (GABA)-mediated inhibitory function within primary motor cortex (M1), which may have implications for residual motor impairment and the potential for functional improvements at the chronic stage. Objective. To quantify GABA neurotransmission and concentration within ipsilesional and contralesional M1 and determine if they relate to upper limb impairment and function at the chronic stage of stroke. Methods. Twelve chronic stroke patients and 16 age-similar controls were recruited for the study. Upper limb impairment and function were assessed with the Fugl-Meyer Upper Extremity Scale and Action Research Arm Test. Threshold tracking paired-pulse transcranial magnetic stimulation protocols were used to examine short- and long-interval intracortical inhibition and late cortical disinhibition. Magnetic resonance spectroscopy was used to evaluate GABA concentration. Results. Short-interval intracortical inhibition was similar between patients and controls ( P = .10). Long-interval intracortical inhibition was greater in ipsilesional M1 compared with controls ( P < .001). Patients who did not exhibit late cortical disinhibition in ipsilesional M1 were those with greater upper limb impairment and worse function ( P = .002 and P = .017). GABA concentration was lower within ipsilesional ( P = .009) and contralesional ( P = .021) M1 compared with controls, resulting in an elevated excitation-inhibition ratio for patients. Conclusion. These findings indicate that ipsilesional and contralesional M1 GABAergic inhibition are altered in this small cohort of chronic stroke patients. Further study is warranted to determine how M1 inhibitory networks might be targeted to improve motor function.


Sign in / Sign up

Export Citation Format

Share Document