Winter tourism dependence: A cyclical and cointegration analysis. Case study for the Alps

2020 ◽  
pp. 135481662093200
Author(s):  
Patricia Aranda-Cuéllar ◽  
José María López-Morales ◽  
María Jesús Such-Devesa

This work studies the evolution of winter tourism in the main European ski resorts in recent years, exploring the degree of dependency it presents on the gross domestic product gaps of those European countries with the main registered incoming tourists attending to these ski resorts. This study consists of two parts: first, a cyclical behavior analysis of the evolution of winter tourism demand in these regions and its level of external dependence. This is achieved by the application of decomposition techniques of the economic cycle to verify the influence of these variables on the degree of cyclical fluctuation of winter tourism. For the second half, cointegration techniques are applied to test the linear or nonlinear combinations of these variables. This dual analysis allows a wider perspective, considering short- and long-term fluctuations, when analyzing co-movements and dependence of the demand of tourism-based destinations with a proxy variable for the income.

Author(s):  
Reinaldo Moraga ◽  
Luis Rabelo ◽  
Alfonso Sarmiento

In this chapter, the authors present general steps towards a methodology that contributes to the advancement of prediction and mitigation of undesirable supply chain behavior within short- and long- term horizons by promoting a better understanding of the structure that determines the behavior modes. Through the integration of tools such as system dynamics, neural networks, eigenvalue analysis, and sensitivity analysis, this methodology (1) captures the dynamics of the supply chain, (2) detects changes and predicts the behavior based on these changes, and (3) defines needed modifications to mitigate the unwanted behaviors and performance. In the following sections, some background information is given from literature, the general steps of the proposed methodology are discussed, and finally a case study is briefly summarized.


2019 ◽  
Vol 13 (4) ◽  
pp. 1325-1347 ◽  
Author(s):  
Pierre Spandre ◽  
Hugues François ◽  
Deborah Verfaillie ◽  
Marc Pons ◽  
Matthieu Vernay ◽  
...  

Abstract. Climate change is increasingly regarded as a threat for winter tourism due to the combined effect of decreasing natural snow amounts and decreasing suitable periods for snowmaking. The present work investigated the snow reliability of 175 ski resorts in France (Alps and Pyrenees), Spain and Andorra under past and future conditions using state-of-the-art snowpack modelling and climate projections using Representative Concentration Pathways RCP2.6, RCP4.5 and RCP8.5. The natural snow reliability (i.e. without snowmaking) elevation showed a significant spatial variability in the reference period (1986–2005) and was shown to be highly impacted by the ongoing climate change. The reliability elevation using snowmaking is projected to rise by 200 to 300 m in the Alps and by 400 to 600 m in the Pyrenees in the near future (2030–2050) compared to the reference period for all climate scenarios. While 99 % of ski lift infrastructures exhibit adequate snow reliability in the reference period when using snowmaking, a significant fraction (14 % to 25 %) may be considered in a critical situation in the near future. Beyond the mid-century, climate projections highly depend on the scenario with either steady conditions compared to the near future (RCP2.6) or continuous decrease in snow reliability (RCP8.5). Under RCP8.5, our projections show that there would no longer be any snow-reliable ski resorts based on natural snow conditions in the French Alps and Pyrenees (France, Spain and Andorra) at the end of the century (2080–2100). For this time period and this scenario, only 24 resorts are projected to remain reliable with snowmaking, all being located in the Alps.


Author(s):  
Timothe´e Perdrizet ◽  
Daniel Averbuch

This paper describes and exemplifies an efficient methodology to assess, jointly and in a single calculation, the short and long terms failure probabilities associated to the extreme response of a floating wind turbine, subjected to wind and wave induced loads. This method is applied to the realistic case study OC3-Hywind used in phase IV of the IEA (International Energy Agency) Annex XXIII Offshore Code Comparison Collaboration. The key point of the procedure, derived from the outcrossing approach, consists in computing the mean of the outcrossing rate of the floating wind turbine response in the failure domain over both the short term variables and the ergodic variables defining long term parameters.


Sign in / Sign up

Export Citation Format

Share Document