Ultrafine particles in the cabin of a waiting commercial airliner at Tianjin International Airport, China

2017 ◽  
Vol 27 (9) ◽  
pp. 1247-1258 ◽  
Author(s):  
Jianlin Ren ◽  
Junjie Liu ◽  
Xiaodong Cao ◽  
Fei Li ◽  
Jianmin Li

Passengers and crew on board of commercial airliners often spend extra time in the cabin waiting for departure due to flight delays. During the waiting period, a large amount of ambient ultrafine particles (UFPs) may penetrate into the aircraft cabin through the environmental control system (ECS) and ground air-conditioning cart (GAC). However, limited data are available for human exposure, in waiting commercial airliners, to freshly emitted UFPs from the exhaust of ground vehicles and airliners. To address this issue, we measured the ambient and in-cabin particle number concentrations and particle size distributions (PSDs) simultaneously in an MD-82 airliner parked at Tianjin International Airport, China. When air was supplied to the cabin by GAC, particle counts variation outdoors caused in-cabin variation with a 1–2 min delay. The in-cabin and ambient PSDs ranged from 15 to 600 nm were bimodal, with peaks at 30–40 and 70–90 nm. The GAC and ECS removed 1–73% particles in the size range of 15–100 nm and 30–47% in the size range of 100–600 nm. The relationship between the penetration factor and particle size was an inverted U-curve. An improved particle dynamic model from this study was used to calculate the time-dependent in-cabin UFPs concentrations with dramatic changes in outdoor concentration.

1996 ◽  
Vol 11 (2) ◽  
pp. 387-390 ◽  
Author(s):  
Li Lian ◽  
Lu Taijing ◽  
Yasushi Zaizu ◽  
T. Ogawa

Quantitative and qualitative investigations on the size distribution of ultrafine particles in KDP solutions were performed by a laser light scanning particle counter and by comparing with scattering polystyrene particles of standard size. The ultrafine particles are of a size distribution from <70 nm to 2000 nm, and the density of the particles sharply decreased with increasing particle size. Most of them were smaller than 100 nm, and almost no particles were >1000 nm. The size of the visual particles, which are distinguished individually by a laser light-scattering technique,3 was estimated in the size range from 200 nm to 1000 nm. The reliability of the results was evaluated.


2001 ◽  
Author(s):  
V. Aizenberg ◽  
P. Baron ◽  
K. Choe ◽  
S. Grinshpun ◽  
K. Willeke

2021 ◽  
pp. 1950016
Author(s):  
Katsumi Saitoh ◽  
Akihiro Fushimi ◽  
Nobuyuki Takegawa ◽  
Koichiro Sera

To characterize the chemical composition of aircraft exhaust particles, we developed a treatment method of jet fuel for an elemental analysis by an in-vacuum PIXE system. Eleven elements (Si, S, Cl, K, Ca, Cr, Fe, Ni, Cu, Zn, and Pb) were identified from each sample. The concentrations of S from five JET A-1 fuel samples collected on different days ranged from 30.4 to 440 wt.-ppm. The concentration level of S agreed well with the measurement results obtained by an in-air PIXE analysis, which we have previously performed to determine the major content elements and their concentration levels. Nine elements out of the identified 11 elements (Si, Cl, K, Ca, Cr, Ni, Cu, Zn, and Pb), which were not detected by the in-air PIXE analysis, were detected in all the JET A-1 fuel samples measured. Among these elements, Si, Ni, Cu, Zn, and Pb were found to be the major components. It is suggested that particles emitted from aircraft jet engines, which are generally in the size range smaller than 100 nm (ultrafine particles: UFPs), may contain Si, Ni, Cu, Zn, and Pb. These findings provide useful insights into the source apportionment of UFPs in and around airports.


2003 ◽  
Vol 3 (6) ◽  
pp. 5513-5546 ◽  
Author(s):  
M. Ketzel ◽  
P. Wåhlin ◽  
A. Kristensson ◽  
E. Swietlicki ◽  
R. Berkowicz ◽  
...  

Abstract. Particle size distribution (size-range 3–900 nm) and PM10 was measured simultaneously at an urban background station in Copenhagen, a near-city background and a rural location during a period in September-November 2002. The study investigates the contribution from urban versus regional sources of particle number and mass concentration. The total particle number (ToN) and NOx are well correlated at the urban and near-city level and show a distinct diurnal variation, indicating the common traffic source. The average ToN at the three stations differs by a factor of 3. The observed concentrations are 2500 # cm−3, 4500 # cm−3 and 7700 # cm−3 at rural, near-city and urban level, respectively. PM10 and total particle volume (ToV) are well correlated between the three different stations and show similar concentration levels, in average within 30% relative difference, indicating a common source from long-range transport that dominates the concentrations at all locations. Measures to reduce the local urban emissions of NOx and ToN are likely to affect both the street level and urban background concentrations, while for PM10 and ToV only measurable effects at the street level are probable. Taking into account the supposed stronger health effects of ultrafine particles reduction measures should address particle number emissions. The traffic source contributes strongest in the 10–200 nm particle size range. The maximum of the size distribution shifts from about 20–30 nm at kerbside to 50–60 nm at rural level. We also observe particle formation events in the 3–20 nm size range at rural location in the afternoon hours, mainly under conditions with low concentrations of pre-existing aerosol particles. The maximum in the size distribution of the "traffic contribution" seems to be shifted to about 28 nm in the urban location compared to 22 nm at kerbside. Assuming NOx as an inert tracer on urban scale let us estimate that ToN at urban level is reduced by 15–30% compared to kerbside. Particle removal processes, e.g. deposition and coagulation, which are most efficient for smallest particle sizes (<20 nm) and condensational growth are likely mechanisms for the loss of particle number and the shift in particle size.


1999 ◽  
Vol 39 (2) ◽  
pp. 127-134 ◽  
Author(s):  
B. G. Krishnappan ◽  
J. Marsalek ◽  
W. E. Watt ◽  
B. C. Anderson

Three seasonal surveys of suspended solids were carried out in an on-stream stormwater management pond, by means of a submersible laser particle size analyser. Size distributions were measured at up to 17 points in the pond, and water samples collected at the same locations were analysed for primary particles aggregated in flocs. Observed suspended solids were mostly composed of flocs, with maximum sizes ranging from 30 to 212 μm for winter and summer surveys, respectively. Using a relationship defining the floc density as a function of floc size and Stokes' equation for settling, an empirical relationship expressing the floc fall velocity as a function of floc size was produced. This relationship indicates that naturally formed flocs in the size range from 5 to 15 μm would settle faster than both smaller primary particles of higher density, and somewhat larger flocs of lower density, which are however susceptible to break up by turbulence.


1996 ◽  
Vol 60 (3) ◽  
pp. 318-323 ◽  
Author(s):  
Satoru Ohno ◽  
Hideo Okuyama ◽  
Kazuhiro Honma ◽  
Yoshio Sakka

Sign in / Sign up

Export Citation Format

Share Document