381. Sampling Efficiencies of Three Personal Aerosol Samplers within and Beyond the Inhalable Particle Size Range

2001 ◽  
Author(s):  
V. Aizenberg ◽  
P. Baron ◽  
K. Choe ◽  
S. Grinshpun ◽  
K. Willeke
2015 ◽  
Vol 48 (17) ◽  
pp. 92-97 ◽  
Author(s):  
Stefan Botha ◽  
Ian K. Craig ◽  
Johan D. le Roux

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Razif Harun ◽  
Michael K. Danquah ◽  
Selvakumar Thiruvenkadam

Effective optimization of microalgae-to-bioethanol process systems hinges on an in-depth characterization of key process parameters relevant to the overall bioprocess engineering. One of the such important variables is the biomass particle size distribution and the effects on saccharification levels and bioethanol titres. This study examined the effects of three different microalgal biomass particle size ranges, 35 μm ≤x≤ 90 μm, 125 μm ≤x≤ 180 μm, and 295 μm ≤x≤ 425 μm, on the degree of enzymatic hydrolysis and bioethanol production. Two scenarios were investigated: single enzyme hydrolysis (cellulase) and double enzyme hydrolysis (cellulase and cellobiase). The glucose yield from biomass in the smallest particle size range (35 μm ≤x≤ 90 μm) was the highest, 134.73 mg glucose/g algae, while the yield from biomass in the larger particle size range (295 μm ≤x≤ 425 μm) was 75.45 mg glucose/g algae. A similar trend was observed for bioethanol yield, with the highest yield of 0.47 g EtOH/g glucose obtained from biomass in the smallest particle size range. The results have shown that the microalgal biomass particle size has a significant effect on enzymatic hydrolysis and bioethanol yield.


2020 ◽  
Author(s):  
Chang Hoon Jung ◽  
JiYi Lee ◽  
Junshik Um ◽  
Yong Pyo Kim

<p>In this study, simplified analytic type of expression for size dependent MEs (Mass efficiencies) are developed. The entire size was considered assuming lognormal size distribution for sulfate, nitrate and NaCl aerosol species and the MEE of each aerosol chemical composition was estimated by fitting Mie’s calculation. The obtained results are compared with the results from the Mie-theory-based calculations and showed comparable results.</p><p>The mass efficiencies of all aerosol components for each size range are compared with Mie’s results and approximated as a function of geometric mean diameter in the form of a power law formula. Finally, harmonic mean type approximation was used to cover entire particle size range.</p><p>Also, analytic expression of approximated scattering enhancement factor which stands for the effect of hygroscopic growth factor for polydispersed aerosol on aerosol optical properties are obtained.</p><p>Based on aerosol thermodynamic models, mass growth factor can be obtained and their optical properties can be obtained by using Mie theory with different aerosol properties and size distribution. Finally, scattering enhancement factor was approximated fRH for polydispersed aerosol as a function of RH.</p><p>Finally, we also compared the simple forcing efficiency (SFE, W/g) of polydisperse aerosols between the developed simple approach and by the method using the Mie theory. The results show that current obtained approximated methods are comparable with existing numercal calculation based results for polydipersed particle size.</p>


Sign in / Sign up

Export Citation Format

Share Document