counting efficiency
Recently Published Documents


TOTAL DOCUMENTS

284
(FIVE YEARS 25)

H-INDEX

26
(FIVE YEARS 2)

Author(s):  
Florian Mertes ◽  
Stefan Röttger ◽  
Annette Röttger

In this work, a novel approach for the standardization of low-level 222Rn emanation is presented. The technique is based on the integration of a 222Rn source, directly, with an α-particle detector, which allows the residual 222Rn to be continuously monitored. Preparation of the device entails thermal physical vapor deposition of 226RaCl2 directly onto the surface of a commercially available ion implanted Si-diode detector, resulting in a thin-layer geometry. This enables continuous collection of well resolved α-particle spectra of the nuclei, decaying within the deposited layer, with a detection efficiency of approximately 0.5 in a quasi 2π geometry. The continuously sampled α-particle spectra are used to derive the emanation by statistical inversion. It is possible to achieve this with high temporal resolution due to the small background and the high counting efficiency of the presented technique. The emanation derived in this way exhibits a dependence on the relative humidity of up to 15% in the range from 20% rH to 90% rH. Traceability to the SI is provided by employing defined solid-angle α-particle spectrometry to characterize the counting efficiency of the modified detectors. The presented technique is demonstrated to apply to a range covering the release of at least 1 to 210 222Rn atoms per second, and it results in SI-traceable emanation values with a combined standard uncertainty not exceeding 2%. This provides a pathway for the realization of reference atmospheres covering typical environmental 222Rn levels and thus drastically improves the realization and the dissemination of the derived unit of the activity concentration concerning 222Rn in air.


2021 ◽  
Vol 14 (12) ◽  
pp. 7693-7706
Author(s):  
Gian Lieberherr ◽  
Kevin Auderset ◽  
Bertrand Calpini ◽  
Bernard Clot ◽  
Benoît Crouzy ◽  
...  

Abstract. This study presents the first reference calibrations of three commercially available bioaerosol detectors. The Droplet Measurement Technologies WIBS-NEO (new version of the wideband integrated bioaerosol spectrometer), Plair Rapid-E, and Swisens Poleno were compared with a primary standard for particle number concentrations at the Federal Institute for Metrology (METAS). Polystyrene (PSL) spheres were used to assess absolute particle counts for diameters from 0.5 to 10 µm. For the three devices, counting efficiency was found to be strongly dependent on particle size. The results confirm the expected detection range for which the instruments were designed. While the WIBS-NEO achieves its highest efficiency with smaller particles, e.g. 90 % for 0.9 µm diameter, the Plair Rapid-E performs best for larger particles, with an efficiency of 58 % for particles with a diameter of 10 µm. The Swisens Poleno is also designed for larger particles but operates well from 2 µm. However, the exact counting efficiency of the Poleno could not be evaluated as the cut-off diameter range of the integrated concentrator unit was not completely covered. In further experiments, three different types of fluorescent particles were tested to investigate the fluorescent detection capabilities of the Plair Rapid-E and the Swisens Poleno. Both instruments showed good agreement with the reference data. While the challenge to produce known concentrations of larger particles above 10 µm or even fresh pollen particles remains, the approach presented in this paper provides a potential standardised validation method that can be used to assess counting efficiency and fluorescence measurements of automatic bioaerosol monitoring devices.


2021 ◽  
Vol 8 (1) ◽  
pp. 017002
Author(s):  
Hem Moktan ◽  
Raj Kumar Panta ◽  
Sang Hyun Cho

Abstract Commercially available fully spectroscopic pixelated cadmium telluride (CdTe) detector systems have been adopted lately for benchtop x-ray fluorescence (XRF) imaging/computed tomography (XFCT) of objects containing metal nanoprobes such as gold nanoparticles (GNPs). To date, however, some important characteristics of such detector systems under typical operating conditions of benchtop XRF/XFCT imaging systems are not well known. One important but poorly studied characteristic is the effect of detector bias-voltage on photon counting efficiency, energy resolution, and the resulting material detection limit. In this work, therefore, we investigated these characteristics for a commercial pixelated detector system adopting a 1-mm-thick CdTe sensor (0.25-mm pixel-pitch), known as HEXITEC, incorporated into an experimental benchtop cone-beam XFCT system with parallel-hole detector collimation. The detector system, operated at different bias-voltages, was used to acquire the gold XRF/Compton spectra from 1.0 wt% GNP-loaded phantom irradiated with 125 kVp x-rays filtered by 1.8-mm Tin. At each bias-voltage, the gold XRF signal, and the full-width-at-half-maximum at gold Kα 2 XRF peak (∼67 keV) provided photon counting efficiency and energy resolution, respectively. Under the current experimental conditions, the detector photon counting efficiency and energy resolution improved with increasing bias-voltage by ∼41 and ∼29% at −300V; ∼54 and ∼35% at −500V, respectively, when compared to those at −100V. Consequently, the GNP detection limit improved by ∼26% at −300V and ∼30% at −500V. Furthermore, the homogeneity of per-pixel energy resolution within the collimated detector area improved by ∼34% at −300V and ∼54% at −500V. These results suggested the gradual improvements in the detector performance with increasing bias-voltage up to −500V. However, at and beyond −550V, there were no discernible improvements in photon counting efficiency and energy resolution. Thus, the bias-voltage range of −500 to −550V was found optimal under the current experimental conditions that are considered typical of benchtop XRF/XFCT imaging tasks.


2021 ◽  
Author(s):  
Fan Mei ◽  
Steven Spielman ◽  
Susanne Hering ◽  
Jian Wang ◽  
Mikhail Pekour ◽  
...  

Abstract. Capturing the vertical profiles and horizontal variations of atmospheric aerosols often requires accurate airborne measurements. With the advantage of avoiding health and safety concerns related to the use of butanol or other chemicals, a water-based condensation particle counter (wCPC) has emerged to provide measurements under various environments. However, the airborne deployment of wCPC is relatively rare due to the lack of characterization of wCPC performance. This study investigates the performance of a commercial "versatile" water CPC (vWCPC Model 3789, TSI) under low-pressure conditions. The effect of conditioner temperature on wCPC performance at low pressure is examined through numerical simulation and laboratory experiments. We show that the default instrument temperature setting of 30 °C for the conditioner is not suitable for airborne measurement and that the optimal conditioner temperature for low-pressure operation is 27 °C. Additionally, we show that insufficient droplet growth becomes more significant under the low-pressure operation. The variation in the chemical composition can contribute up to 20 % uncertainty in the counting efficiency of the wCPC, but this variation is independent of pressure.


2021 ◽  
pp. 61-65
Author(s):  
Biere Ebibuloami ◽  
Ogunremi Ayorinde ◽  
Aina Oluwagbenga ◽  
Emumejaye Kugbere ◽  
Olaoye Adeola ◽  
...  

Qualitative analysis of radionuclides requires the use of reliable gamma-ray detection system. The NaI(Tl) detector has been widely used and still one of the most used detectors today. It is therefore imperative to validate the reliability of the 5x5 cm2 NaI(Tl) gamma spectrometry system used in carrying out gamma-ray analysis of soil samples in the Radiation and Health Laboratory, Federal University of Agriculture Abeokuta, Nigeria. The gamma ray spectrometer is housed in a 5 cm thick cylindrical lead shield. Calibration was executed using standard materials produced under the auspices of the International Atomic Energy Agency (IAEA). Resolution and detection limit (LD) of the detector were determined using full width at half the maximum of the energy peak of 137Cs and background signal level of the reference materials respectively. Counting efficiencies of the detector was calculated using energies of 1460 keV, 1764keV and 2615 keV for 40K, 226Ra and 232Th respectively. Secondary samples, RGMIX1 and RGMIX2 were formulated and counted to calculate activity concentrations using the NaI(Tl) detector. Resolution of the detector was calculated to be 7.8% of 137Cs, which is good for a NaI(Tl) detector. The counting efficiency of the detector is seen to depend on the gamma ray energy. The results from this work shows that the detector system is suitable gamma spectrometry, and will give quality measurements when used for quantitative determination of radionuclides in environmental samples. The efficiency and resolution of the NaI(Tl) detector should also be determined using photon energies obtained from other radioactive sources.


2021 ◽  
Author(s):  
Gian Lieberherr ◽  
Kevin Auderset ◽  
Bertrand Calpini ◽  
Bernard Clot ◽  
Benoît Crouzy ◽  
...  

Abstract. This study presents the first reference calibrations of three commercially available bioaerosol detectors. The Droplet Measurement Technologies WIBS-NEO, Plair Rapid-E, and Swisens Poleno were compared with a primary standard for particle number concentrations at the Federal Institute for Metrology METAS. Polystyrene (PSL) spheres were used to assess absolute particle counts for diameters from 0.5 μm to 10 μm. For the three devices, counting efficiency was found to be strongly dependent on particle size. The results confirm the expected detection range for which the instruments were designed. While the WIBS-NEO achieves its highest efficiency at smaller particles, e.g. 90 % for 0.9 μm diameter, the Plair Rapid-E performs best for larger particles, with an efficiency of 58 % for particles with a diameter of 10 μm. The Swisens Poleno is also designed for larger particles, but operates well from 2 μm. However, the exact counting efficiency of the Poleno could not be evaluated as the cut-off diameter range of the integrated concentrator unit was not completely covered. In further experiments, three different types of fluorescent particles were tested to investigate the fluorescent detection capabilities of the Plair Rapid-E and the Swisens Poleno. Both instruments showed good agreement with the reference data. While the challenge to produce known concentrations of larger particles above 10 μm or even fresh pollen particles remain, the approach presented in this paper provides a potential standardised validation method that can be used to assess counting efficiency and fluorescence measurements of automatic bioaerosol monitoring devices.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3669
Author(s):  
Antonino Buttacavoli ◽  
Gaetano Gerardi ◽  
Fabio Principato ◽  
Marcello Mirabello ◽  
Donato Cascio ◽  
...  

Multiple coincidence events from charge-sharing and fluorescent cross-talk are typical drawbacks in room-temperature semiconductor pixel detectors. The mitigation of these distortions in the measured energy spectra, using charge-sharing discrimination (CSD) and charge-sharing addition (CSA) techniques, is always a trade-off between counting efficiency and energy resolution. The energy recovery of multiple coincidence events is still challenging due to the presence of charge losses after CSA. In this work, we will present original techniques able to correct charge losses after CSA even when multiple pixels are involved. Sub-millimeter cadmium–zinc–telluride (CdZnTe or CZT) pixel detectors were investigated with both uncollimated radiation sources and collimated synchrotron X rays, at energies below and above the K-shell absorption energy of the CZT material. These activities are in the framework of an international collaboration on the development of energy-resolved photon counting (ERPC) systems for spectroscopic X-ray imaging up to 150 keV.


2021 ◽  
pp. 217-245
Author(s):  
C.R. Phillips ◽  
L. Morawska ◽  
A. Khan ◽  
I.-C. Hsieh

Sign in / Sign up

Export Citation Format

Share Document