scholarly journals Multizone modelling of a hybrid ventilated high-rise building based on full-scale measurements for predictive control

2019 ◽  
Vol 29 (4) ◽  
pp. 496-507 ◽  
Author(s):  
Dahai Qi ◽  
Jun Cheng ◽  
Ali Katal ◽  
Liangzhu (Leon) Wang ◽  
Andreas Athienitis

Hybrid ventilation is an effective approach to reduce cooling energy consumption by combining natural and mechanical ventilation. Previous studies of full-scale whole-building measurements of high-rise hybrid ventilation are quite limited due to the complexities of buildings and variable ambient conditions. As a result, validated and accurate whole-building simulations of hybrid ventilation often cannot be found in the literature. This paper reports a series of full-scale measurements of hybrid ventilation in a 17-storey high-rise building and associated whole-building simulations by 15-zone detailed and a 5-zone simplified multizone models. The paper is one of the first studies of using multizone models and real-world full-scale data and sharing key operational and performance experience and case studies of high-rise hybrid ventilation. Both the test data and the validated simulation models can be used for the comparison and validation of simulation models. The 5-zone simplified model developed from this study was able to model such a complex high-rise building by only a few zones, making possible the on-line model predictive control of a high-rise building. This was illustrated in this paper by an example of optimizing the uniformity of the hybrid ventilation on different floors by modifying inlet areas.

1984 ◽  
pp. 217-228
Author(s):  
W.A. Dalgliesh ◽  
K.R. Cooper ◽  
J.T. Templin

2017 ◽  
Vol 6 (3) ◽  
pp. 227-235 ◽  
Author(s):  
Masatoshi Tamari ◽  
Tadashi Yoshihara ◽  
Masato Miyashita ◽  
Nobuyuki Ariyama ◽  
Masataka Nonoyama

1996 ◽  
Vol 1996 (68) ◽  
pp. 15-24
Author(s):  
Kazuo ONTAKE ◽  
Yoshihiro MATAKI

Author(s):  
Shoko Okamura ◽  
Kei Muto

<p>This paper describes the method of structural design of a plate-like ultra high-rise building, taking the Shinjuku Toho Building as an example. In particular the major problems in the structural design of this building are described, namely ensuring safety during earthquakes, ensuring habitability during strong winds, and ensuring the load resistance of the columns that are subject to large axial forces. Also, the test results and performance of an "improved non-scallop method" for beam- column joint are described. Finally the method of structural designing "Godzilla’s Head" is described.</p>


1983 ◽  
Vol 13 (1-3) ◽  
pp. 217-228 ◽  
Author(s):  
W.A. Dalgliesh ◽  
K.R. Cooper ◽  
J.T. Templin

Fluids ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 233
Author(s):  
Giulio Vita ◽  
Simone Salvadori ◽  
Daniela Anna Misul ◽  
Hassan Hemida

An increasing number of engineering applications require accurate predictions of the flow around buildings to guarantee performance and safety. This paper investigates the effects of variations in the turbulent inflow, as predicted in different numerical simulations, on the flow pattern prediction around buildings, compared to wind tunnel tests. Turbulence characteristics were assessed at several locations around a model square high-rise building, namely, above the roof region, at the pedestrian level, and in the wake. Both Reynolds-averaged Navier–Stokes (RANS, where turbulence is fully modelled) equations and large-eddy simulation (LES, where turbulence is partially resolved) were used to model an experimental setup providing validation for the roof region. The performances of both techniques were compared in ability to predict the flow features. It was found that RANS provides reliable results in regions of the flow heavily influenced by the building model, and it is unreliable where the flow is influenced by ambient conditions. In contrast, LES is generally reliable, provided that a suitable turbulent inflow is included in the simulation. RANS also benefits when a turbulent inflow is provided in simulations. In general, LES should be the methodology of choice if engineering applications are involved with the highly separated and turbulent flow features around the building, and RANS provides reliable information when regions of high wind speed and low turbulence are investigated.


Sign in / Sign up

Export Citation Format

Share Document